PROCESOS DE MEDICIÓN EN LA PRÁCTICA
SOCIOCULTURAL DEL CULTIVO DE ARROZ A TRAVÉS DE
UN PROYECTO DE AULA

Luz Obdulia Mosquera Quinto
Medardo Villacob Gallego

Universidad de Antioquia
Facultad de Educación, Departamento de Educación Avanzada,
Programa de Maestría en Educación de Profundización
Medellín, Colombia

2019
Procesos de medición en la práctica sociocultural del cultivo de arroz a través de un proyecto de aula

Luz Obdulia Mosquera Quinto
Medardo Villacob Gallego

Tesis o trabajo de investigación presentada(o) como requisito parcial para optar al título de:

Magister en Educación - Modalidad Profundización

Asesores (a):
Natalia Múnera Escobar Magister en Didáctica de las Matemáticas

Línea de Investigación:
Educación Matemática

Universidad de Antioquia
Facultad de Educación, Departamento de Educación Avanzada
Programa de Maestría en Educación de Profundización
Medellín, Colombia
2019
Dedicatoria

Con amor a nuestras familias.

A nuestros cónyuges: Alfonso y Verónica Andrea, por su apoyo y amor incondicional en todo este proceso.

A nuestros hijos: Sara Alejandra, Luis Alfonso y Luciana, por ser el motor que nos motivaba a seguir adelante y no desfallecer.

A nuestras madres: Luz Orlinda y Amparo del Socorro quienes con su amor y cariño fueron el mejor soporte para terminar este trabajo.
Agradecimientos

A Dios

Por la vida y salud que permitió que afrontáramos este proceso de formación con la ayuda de cada una de las personas que puso en nuestro camino y que de una o de otra manera contribuyeron en esta labor.

A la Institución Educativa San Santiago de Urabá sede Mantagorda

Agradecemos al señor rector y a la docente Kathy Hernández por permitirnos hacer posible este trabajo de profundización en el establecimiento educativo, por su disponibilidad y la participación en todo este proceso educativo.

A la Universidad de Antioquia

Por permitirnos aprender con cada uno de los seminarios, donde a partir del diálogo y las experiencias compartidas con docentes y compañeros se enriquece nuestra labor como docentes.

A nuestras familias

Por el apoyo brindado en los momentos de angustia, que con su amor y mensajes de ánimo, nos daban las fuerzas para poder continuar.

Al Ministerio de Educación Nacional

Por la oportunidad de crecer en nuestra profesión docente gracias al programa de becas a la excelencia.

A nuestra asesora

Natalia Múnera Escobar por el apoyo brindado para la realización de esta propuesta de profundización.

A la docente

Soraya Isabel García por su acompañamiento en este proceso de formación, que nos dio las fuerzas para no desfallecer.
CONTENIDO

1. PLANTEAMIENTO DEL PROBLEMA ... 1
 1.1. Contextualización .. 1
 1.2. Formulación del Problema .. 6
 1.3. Objetivos ... 12
 1.3.1. Objetivo General ... 12
 1.3.2. Objetivos Específicos ... 12
 1.4. Justificación .. 13

2. MARCO TEÓRICO .. 16
 2.1. Antecedentes ... 16
 2.2. Sobre los procesos de medición ... 19
 2.2.1. Procesos de medición .. 19
 2.2.1.1. Percepción ... 20
 2.2.1.2. Comparación ... 22
 2.2.1.3. Estimación ... 23
 2.2.2. Unidad de medida ... 24
 2.3. Etnomatemática .. 27
 2.4. Practica sociocultural .. 28
 2.5. Práctica escolar .. 31
 2.6. El Proyecto de aula .. 32

3. METODOLOGÍA .. 34
 3.1. Enfoque ... 35
 3.2. Participantes ... 35
 3.3. Método ... 37
 3.4. Técnicas e Instrumentos para la Recolección de Información 40
3.4.1. La observación participante.. 40
3.4.2. Diario de campo.. 41
3.4.3. Entrevistas... 42
3.4.4. Proyecto de Aula... 43
3.4.5. Fotografías y audios... 46
3.5. Análisis de Resultados .. 46
4. ANÁLISIS DE LA INFORMACIÓN ... 51
4.1. Saberes y prácticas de procesos de medición en el cultivo de arroz 52
 4.1.1. Procesos de medición (percepción, comparación y estimación) 52
 4.1.1.1. Percepción.. 52
 4.1.1.2. Comparación... 54
 4.1.1.3. Estimación... 56
 4.1.2. Unidades de Medida propias... 62
 4.1.3. Saber cultural (el conocimiento, la supervivencia y la trascendencia) 66
4.2. Relaciones entre la práctica escolar y la práctica sociocultural del cultivo de arroz 73
 4.2.1. Tensiones.. 74
 4.2.2. Desafíos.. 82
 4.2.3. Aprendizajes .. 83
5. CONCLUSIONES.. 86
6. RECOMENDACIONES... 90
REFERENCIAS BIBLIOGRÁFICAS .. 91
ANEXOS .. 98
Anexo 1. Proyecto de Aula ... 98
Anexo 2. Autorización estudiantes.. 125
Anexo 3. Autorización padre de familia. ... 128
Anexo 4. Autorización docente... 129
Anexo 5. Autorización Directivo Docente.. 130
LISTA DE TABLAS

Tabla 1. Esquema de las actividades planteadas para el proyecto de aula. 45
LISTA DE FIGURAS

Figura 1. Ubicación geográfica de la vereda Mantagorda. Recuperada en Google imágenes

Figura 2. Informe por colegio 2017 - Resultados Pruebas Saber 2016. Matemáticas, Grado 3° (MEN, 2017a, p. 5)

Figura 3. Informe por colegio 2017 - Resultados Pruebas Saber 2016. Matemáticas, Grado 3° (MEN, 2017b, p. 5)

Figura 6. Informe por colegio Matemáticas, Grado 3° (MEN, 2017a, p. 15)

Figura 8. Diario de Campo. 9 de marzo de 2018

Figura 10. Esquema para la organización y análisis de la información. Fuente: Elaboración propia

Figura 12. Esquema de categorías y unidades de análisis. Fuente: Elaboración propia

Figura 13. Dibujo colectivo tercer grado, Actividad inicial 8 de mayo, 2018

Figura 14. Salida de campo, siembra de arroz 9 de mayo, 2018

Figura 15. Actividad N°3, 9 de mayo, 2018

Figura 16. Actividad N°3, 9 de mayo, 2018

Figura 17. Actividad inicial 8 de mayo, 2018 (Deiner grado tercero)
RESUMEN

El presente trabajo de profundización se realizó bajo una perspectiva sociocultural, específicamente sobre los procesos de medición presentes en la siembra de arroz de la vereda Mantagorda, la pregunta de profundización fue: ¿Cómo favorecer la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá sede Mantagorda?

El trabajo sobre la medida en la escuela, requiere de una reflexión que permita dar cuenta de las relaciones que se pueden establecer entre las matemáticas y el contexto. Autores como Bishop (1999), D’Ambrosio (2014), entre otros; expresan la importancia de ampliar el campo de práctica de la educación matemáticas de tal manera que trascienda del salón de clases.

La metodología empleada fue la cualitativa; se diseñó un proyecto de aula González (2001), como estrategia didáctica que permitió el acercamiento entre los procesos de medición y la práctica sociocultural del cultivo de arroz. Los datos se originaron a través de la observación participante, la entrevista y el diario de los investigadores en el desarrollo del proyecto de aula.

A partir del análisis, surgieron dos categorías que permitieron identificar procesos como percepción, comparación y estimación, unidades de medidas no convencionales usadas por la comunidad, y el saber cultural inmerso en la práctica, con lo que se evidenciaron algunas tensiones, desafíos y aprendizajes en torno al tratamiento de la medida en la escuela de esta comunidad en particular.

Palabras clave: Educación matemática, procesos de medición, cultivo de arroz, prácticas socioculturales.
ABSTRACT

The present work of deepening was carried out under a sociocultural perspective, it was adapted to the question of deepening in the rice planting of the village Mantagorda, the deepening question was: How to favor the construction of the measurement processes from the practice sociocultural The cultivation of rice, the medium of a classroom project in the third grade students of the Educational Institution Santiago de Urabá Mantagorda headquarters?

The work on the measurement in the school, requires a reflection that allows to give account of the relationships that can be established between the mathematics and the context. Authors such as Bishop (1999), D'Ambrosio (2014), among others; Express the importance of expanding the field of mathematics education practice in such a way that it transcends the classroom.

The methodology used was qualitative; A González classroom project was designed (2001), as a didactic strategy that served to bring together the measurement processes and the sociocultural practice of rice cultivation. The data originated through the participant observation, the interview and the diary of the researchers in the development of the classroom project.

From the analysis, two categories emerged that allowed to identify the processes such as perception, comparison and performance, the units of measures not more convenient for the community, and the cultural knowledge in practice, with the evidence of some tensions, answers and learnings in the treatment of the measure in the school of this particular community.

Keywords: Mathematics education, measurement processes, rice cultivation, sociocultural practices.
1. PLANTEAMIENTO DEL PROBLEMA

1.1. Contextualización

Este trabajo se realizó en la Institución Educativa Santiago de Urabá ubicada en la vereda Mantagorda, zona norte del municipio de Turbo, departamento de Antioquia, en la sede educativa Escuela Nueva Mantagorda, la cual cuenta con dos docentes en aulas multigrado distribuidos según el número de estudiantes. Actualmente, una docente se encarga de atender a preescolar, primero y quinto y su compañera orienta los grupos segundo, tercero y cuarto. En la sede, hay alrededor de 43 estudiantes, y en grado tercero, que ha sido el grupo seleccionado para la aplicación del presente trabajo, asisten diez estudiantes.

En cuanto a la comunidad que allí habita, hay personas oriundas de diferentes departamentos, siendo representativa la población de la costa atlántica, quienes por causa de la violencia fueron desplazados de sus territorios, por lo cual se asentaron en este lugar y sus alrededores; se dedican a las labores del campo como la siembra de cultivos (arroz, yuca, ñame, maíz) y a la ganadería.

![Ubicación geográfica de la vereda Mantagorda](image1)

Figura 1. Ubicación geográfica de la vereda Mantagorda. Recuperada en Google imágenes

1 Las aulas multigrado congregan en un solo espacio físico a niños de varios grados escolares, quienes son guiados por un solo maestro, generalmente son escuelas de la zona rural (MEN, 2017).
Estas prácticas socioculturales relacionadas con la agricultura en gran parte tienen sus orígenes en las comunidades Indígenas Zenúes\(^2\) que aún conservan su resguardo en zonas limítrofes a la vereda Mantagorda y que de una u otra manera influyen en la cotidianidad de este territorio. Es por eso, que el trabajo agrícola se realiza mediante prácticas artesanales, es decir, de forma manual y sin el uso de maquinaria.

El pueblo Zenú considera a la sociedad externa como complemento social de su grupo. Por esta razón, interactúa con diferentes miembros ajenos a su comunidad, que inciden en sus acciones políticas, económicas y culturales. Es claro que el pueblo indígena Zenú mantiene un vínculo fuerte con sus vecinos inmediatos como lo son los campesinos y la comunidad de la vereda Mantagorda.

En este sentido, los indígenas Zenú centran sus relaciones con estas personas alrededor de temas como el intercambio comercial y laboral. Debido a la ubicación de sus resguardos y la situación precaria que afronta la población, resulta fácil asociarse a dinámicas laborales externas, a través del trabajo informal o jornaleo en fincas cercanas (Sánchez y Arango, 2004).

Es desde el tejido de dichas relaciones que las actividades como la siembra de diferentes productos, dentro de ellos el arroz adquieren un valor sociocultural al enriquecerse de las prácticas ancestrales de dichas culturas y que aunque sufren cambios, aún conservan aspectos que se transmiten de generación en generación, de padres a hijos, los mismos que hacen parte de la escuela Mantagorda.

Por otra parte, la Institución Educativa Santiago de Urabá y sus sedes se encuentra focalizada por el Programa Todos a Aprender (PTA), del Ministerio de Educación Nacional (MEN). Este programa fue diseñado con el propósito de mejorar los aprendizajes de los estudiantes del país en los niveles de transición y básica primaria, en las áreas de lenguaje y

\(^2\) El pueblo indígena Zenú se localiza en los resguardos de San Andrés de Sotavento en departamento de Córdoba y El Volao en Urabá. Además, en varios asentamientos pequeños en Sucre, Antioquia, y Chocó. El pueblo Zenú se encuentra concentrado en el departamento de Córdoba, especialmente en el Resguardo de San Andrés de Sotavento, bajo la cabecera municipal de Tolú Viejo. (MINCULTURA, 2010)
matemáticas; para ello se vale del trabajo de tutores, que acompañan a aquellos establecimientos educativos de bajo desempeño, según resultados en pruebas Saber 3° y 5° de matemáticas y lenguaje (MEN, 2011).

De acuerdo con el nivel de desempeño de los estudiantes, muchas de las Instituciones de todo el territorio nacional reciben acompañamiento por parte de uno o dos tutores. Desde el año 2011, se ha venido brindado apoyo a los docentes de estos establecimientos a través de acciones pedagógicas de mejoramiento en torno a las prácticas de aula, a partir del desarrollo una ruta de acompañamiento planteada por el programa (MEN, 2012).

Una de las acciones que se realizaron en el establecimiento educativo, fue la revisión del Proyecto Educativo Institucional (PEI), que en su visión plantea:

La formación de estudiantes competentes en solución de conflictos, situaciones comunicativas, con valores y competentes ante una sociedad en constante cambio. Dicha formación fomentada desde la realización tanto de actividades académicas como sociales que involucran la interacción del estudiante con su entorno. (PEI, 2015, p. 17)

A partir de dicha revisión y apoyados en otros elementos como las observaciones de clase y el análisis de resultados. Los docentes partícipes de este proyecto de profundización

3 Los tutores son docentes comisionados, para la puesta en marcha de acciones pedagógicas encaminadas a fortalecer las prácticas en el aula, brindar referentes curriculares claros que indiquen los objetivos de aprendizaje, desarrollar herramientas apropiadas para la evaluación y trabajar en la selección y uso de materiales educativos para los maestros y estudiantes, los cuales deben estar acordes con los ambientes de aprendizajes. Los tutores realizan acompañamiento a los docentes en sus propias aulas (formación situada), ya que es en la interacción entre pares y educadores con sus alumnos donde ocurren las verdaderas transformaciones educativas. MEN, (2010). Los docentes investigadores de esta propuesta son tutores del PTA, aunque laboran en dos instituciones diferentes. La otra institución acompañada es del municipio de Puerto Berrio, Antioquia la Institución Educativa América, que a diferencia de la I.E. Santiago de Urabá es de la zona urbana.

4 El Decreto 1860 de 1994, en el capítulo III reglamenta la elaboración e implementación del Proyecto Educativo Institucional y hace claridad frente a los elementos que lo componen.
coincidieron en reconocer que la problemática objeto de estudio tiene un carácter generalizado en sus Instituciones, las cuales, aunque se encuentran en diferentes contextos regionales, desde el análisis de resultados de pruebas externas se evidenciaron dificultades en el logro de los aprendizaje de sus estudiantes referidos a la construcción de procesos de medición.

En el caso concreto de las dos instituciones educativas, los resultados de las pruebas Saber descritos en el informe por colegio\(^5\), expresan que hay un porcentaje considerable de estudiantes que no alcanzaron estos aprendizajes en el grado tercero. A continuación, se identifican algunos de los resultados en torno a la consecución de logros por parte de los estudiantes en lo concerniente al pensamiento métrico:

I.E. Santiago de Urabá, Municipio de Turbo, Antioquia

\[
\begin{align*}
&\text{El 50\% no estima medidas con patrones arbitrarios.} \\
&\text{El 48\% no resuelve problemas a partir del análisis de datos recolectados.} \\
&\text{El 44\% no desarrolla procesos de medición usando patrones e instrumentos estandarizados.}
\end{align*}
\]

Figura 2. Informe por colegio 2017 - Resultados Pruebas Saber 2016. Matemáticas, Grado 3° (MEN, 2017a, p. 5)

\(^5\) El informe por colegio es un documento del MEN que presenta a las Instituciones Educativas el estado de las competencias y aprendizajes en Matemáticas y Lenguaje, según los resultados en las pruebas SABER 3\°, 5\° y 9\°, señalando aquellos aprendizajes en los que deben realizar acciones pedagógicas para el mejoramiento (MEN, 2015a). El color naranja indica que entre el 40\% y el 69\% de los estudiantes no contestaron correctamente las preguntas relacionadas con ese aprendizaje.
De la revisión del informe por colegio de ambas instituciones se puede observar cómo los estudiantes presentan dificultades a la hora de estimar medidas con patrones arbitrarios, al igual que para el desarrollo de procesos de medición usando patrones e instrumentos estandarizados. Para ilustrar un poco estos aprendizajes, se tiene en cuenta la matriz de referencia del MEN (2015) donde se describen las evidencias relacionadas con cada aprendizaje evaluado en las pruebas Saber. En este caso, para lograrlo, los estudiantes deben ser competentes en hallar con unidades no convencionales o patrones estandarizados una medida, sea de longitud, superficie o volumen en el caso de grado tercero.

De igual manera, el MEN (2016) para grado tercero plantea en el Derecho Básico de Aprendizaje (DBA) N° 5 que el estudiante al finalizar el año escolar debe “realizar estimaciones y mediciones de volumen, capacidad, longitud, área, peso de objetos o la duración de eventos como parte del proceso para resolver diferentes problemas” (p. 25). Este aprendizaje se puede ser observable desde las evidencias que para él se plantean, a saber:

- Compara objetos según su longitud, área, capacidad, volumen, etc.
- Hace estimaciones de longitud, área, volumen, peso y tiempo según su necesidad en la situación.
- Hace estimaciones de volumen, área y longitud en presencia de los objetos y los instrumentos de medida y en ausencia de ellos.
Empaca objetos en cajas y recipientes variados y calcula la cantidad que podría caber; para ello tiene en cuenta la forma y volumen de los objetos a empacar y la capacidad del recipiente en el que se empaca. (MEN, 2016, p.25)

Tanto la Matriz de Referencia como los DBA, permiten a los docentes acercar los resultados de las Pruebas Saber al trabajo en el aula de clase, es así como a partir de la selección de los aprendizajes a mejorar y en integración con los documentos del MEN (2015, 2016) se identifican como procesos a fortalecer dentro de esta propuesta de profundización la percepción, la comparación y la estimación.

Con respecto a lo anterior, y partiendo de la base de la medida como acción se seleccionó la sede Matagorda dado que el entorno y su contexto rural se convierten en un espacio propicio para reconocer procesos de medición en diferentes actividades del campo, caso contrario al contexto urbano de la Institución del Municipio de Puerto Berrio.

1.2. **Formulación del Problema**

El trabajo sobre la construcción del concepto de medida en la escuela, requirió de una reflexión que permitiera dar cuenta de las relaciones que se pueden establecer entre las matemáticas y el contexto, debido a que este último en muchas ocasiones se ha desligado de las prácticas educativas actuales. Por lo general, los estudiantes han sido sometidos a procesos de medición en el aula con instrumentos convencionales y han sido enfrentados a tareas de conversión de unidades sin darse cuenta de la necesidad misma de medir en la cotidianidad.

En contraste con esta afirmación, Radford (2008), como se citó en Valero (2012, p. 308), habla acerca de cómo la educación matemática “[...] muestra una conexión del pensamiento de los estudiantes y las prácticas escolares” con otras formas de prácticas externas a la escuela y al

5 En el marco teórico se ampliará este concepto.
aula”, lo que invita al docente a que busque ampliar el campo de su práctica y trascender el espacio del salón de clases.

A partir, de los acompañamientos de aula realizados en el establecimiento educativo se observa cómo la trascendencia de la que habla Valero (2012) se ve limitada en tanto que en muchos casos los docentes no tienen una formación específica en el área que les permita desde sus prácticas escolares vincular el contexto de sus estudiantes al aula.

Por su parte, el Ministerio de Educación Nacional, MEN (1998, 2006) propone unos elementos conceptuales y metodológicos de los cuales debe apropiarse el docente para desarrollar el pensamiento métrico, de tal forma, que se pueda vivenciar la medida y los conceptos relativos a ella, inmersos en contextos reales de medición y que giren alrededor de las prácticas y vivencias de los estudiantes, como lo expresan los correspondientes al grado tercero relacionados con el objeto de estudio de este trabajo de profundización.

![Pensamiento Métrico y Sistemas de Medidas](image)

Figura 4. Estándares Básicos de Competencias, Conjunto de grado 1° a 3° MEN (2006).
En relación con el desarrollo del pensamiento métrico, el MEN (1998) postula que el énfasis está en comprender los diferentes atributos medibles e identificar su carácter de invariancia, asignando significado a conceptos, tales como patrón, unidad de medida y a los procesos mismos de medición, lo cual debe redundar en una apropiación del concepto de medida.

Sin embargo, la realidad que observaron los tutores durante los acompañamientos en las prácticas de aula en el grado tercero de la Institución Educativa Santiago de Urabá sede Mantagorda, fue que en las clases de matemáticas el trabajo se centra principalmente en el uso de instrumentos de medida convencionales, tales como el flexómetro o cinta métrica como se muestra en la figura 5. Esta situación lleva a que los estudiantes no tengan claridad frente a los diferentes atributos medibles de un objeto, lo que en la mayoría de los casos los lleva a confundir o a no identificar una unidad de medida acorde a lo que se está buscando.

![Figura 5. Actividad de Clase. Grado 3° Agosto de 2015](image)

En este sentido, el informe por colegio del MEN (2017a), Figura 6, mostró un alto porcentaje de estudiantes del grado tercero con aprendizajes que requerían atención pedagógica y un plan de mejoramiento en ejes temáticos como los procesos de medición con unidades convencionales y no convencionales como se mencionó en la contextualización.
Figura 6. Informe por colegio Matemáticas, Grado 3° (MEN, 2017a, p. 15).

Por otra parte, esas dificultades en los aprendizajes de los estudiantes alrededor de la medición en la escuela contrastan con las vivencias del entorno de los niños, el cual está enmarcado por actividades propias del campo como el cultivo de diversos productos (maíz, arroz, yuca, entre otros), fuentes de diversas situaciones socioculturales, que pueden ser aprovechadas en los procesos de enseñanza y aprendizajes propios de la medición.

Al respecto, Lerman (2015), citado en Valero (2012) ilustra cómo el factor social “ha significado el reconocimiento de que el pensamiento matemático, el aprendizaje y la enseñanza de las matemáticas que están inmersos en estructuras sociales, culturales, económicas y políticas más amplias” (p. 307). Lo descrito anteriormente, favorece la construcción de nuevas prácticas, en las cuales los estudiantes podrán desenvolverse ante situaciones en las que la medición cobre importancia y los docentes encontrarán estrategias ligadas al contexto que rodeaba la vida escolar, favoreciendo la generación de ambientes de aprendizaje.

Las dificultades que presentaban los estudiantes para hallar la medida de un objeto físico, evento o situación sujeta a estimar, no solamente eran teóricas, sino también prácticas, puesto que han sido habilidades poco desarrolladas en los niños, debido a la descontextualización del proceso de aprendizaje del concepto de medición en el ámbito escolar, esta dificultad se encontró
en el desarrollo de las clase cuando el estudiante estimaba mediciones con distintas magnitudes, al utilizar instrumentos y unidades de medida convencionales.

Chamorro y Belmonte (1988), por su parte, expresan que las dificultades que acontecen en el entorno escolar están ligadas, en gran parte, a la falta de actividades prácticas que impiden que la estimación sea más frecuente. Es por eso, que:

[…] Cuando el alumno no hace otra cosa que calcular con los resultados de las mediciones, practicar por tanto la aritmética, es muy fácil caer en las trampas de los índices figurales, como en el caso que asocia a una gran masa o a un objeto voluminoso, o una mayor área a una superficie de mayor perímetro; el alumno carece de las experiencias de referencia que pueden ayudar a crear un conflicto, y por tanto una ruptura, entre las imágenes intuitivas y la deducciones lógicas de ciertas propiedades que gozan la superficie la longitud o el volumen. (p. 231)

Con respecto a la construcción social del concepto de medida, el MEN (1998) expresa que la interacción social y la referencia a un trasfondo significativo para el estudiante, son absolutamente insustituibles. Por su parte, la comunidad de la vereda Mantagorda, al estar ubicada en una zona rural, conformada por diferentes grupos humanos tiene la posibilidad de poder involucrar su contexto, rico en situaciones de labores del campo, en la construcción de sentido a los aprendizajes referidos a la apropiación del concepto de medida y la práctica de distintos procesos de medición.

El planteamiento anterior invita a reflexionar, y dar una mirada al contexto a la hora de abordar el pensamiento métrico con los estudiantes. Dicho contexto, a partir de los planteamientos del MEN (1998, p. 19) se define como “los ambientes que rodean al estudiante y que le dan sentido a la matemática que aprende”, y que se han de tener en cuenta a la hora de estructurar o diseñar la planeación de las clases.

En este orden de ideas, el presente proyecto de profundización reconoció “el contexto sociocultural como elemento importante que puede proveer al individuo de aptitudes,
competencias y herramientas para resolver problemas y para representar las ideas matemáticas”, como lo plantea MEN (1998, p. 15). Es a partir de ese contexto que el estudiante puede dar significado y validez al conocimiento.

En este sentido, el MEN (1998) considera que:

Las condiciones sociales y culturales tanto locales como internacionales, el tipo de interacciones, los intereses que se generan, las creencias, así como las condiciones económicas del grupo social en el que se concreta el acto educativo, deben tenerse en cuenta en el diseño y ejecución de experiencias didácticas. (p. 36)

A partir de estas consideraciones, se puede afirmar que las prácticas sociales y los aprendizajes matemáticos que ellas encierran, se relacionan de manera estrecha, y la escuela pasa a ser un espacio en el que dichos saberes se problematizan y articulan a partir de las conexiones que se establecen dentro y fuera del aula de clase, situación que no se ha evidenciado en la institución, donde se está ejecutando este trabajo de profundización.

Tal como se ha visto, estos postulados permiten evidenciar que el aprendizaje de la medida, no debe limitarse simplemente a los procesos lógicos desarrollados en el aula, por el contrario, se pone de manifiesto que desde las prácticas socioculturales realizadas por y en las comunidades se pueden generar espacios propicios para la construcción de conocimiento matemático.

En consecuencia, se generó una propuesta encaminada a dar solución a la siguiente pregunta de profundización: ¿cómo favorecer la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá sede Mantagorda?
1.3. **Objetivos**

1.3.1. **Objetivo General.**

Analizar la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá, sede Mantagorda.

1.3.2. **Objetivos Específicos.**

- Identificar procesos de medición en la práctica sociocultural del cultivo de arroz.
- Implementar un proyecto de aula para fortalecer procesos de medición mediados por prácticas socioculturales entre estudiantes de grado tercero.
- Describir el proceso de medición presentes en la práctica sociocultural del cultivo de arroz que fortalecen la construcción de la magnitud - longitud.
- Describir las tensiones, desafíos y aprendizajes de la práctica escolar integrada al contexto sociocultural de la escuela.
1.4. Justificación

El proceso de medición surgió a partir de la necesidad del hombre de interactuar con el entorno y es en dicha necesidad donde radica su importancia (Kula 1998). No obstante, en el entorno escolar el acto de medir se ha reducido, en muchas ocasiones, a las actividades planteadas en los libros de texto, que en la mayoría de los casos, desconocen el contexto rico en situaciones en las cuales la medición cobra valor. Una de las principales dificultades, desde la experiencia como docentes tutores, es la diseñar estrategias que permitan integrar las prácticas escolares y las prácticas socioculturales presentes en el contexto.

Retoman los planteamientos de Monteiro (2005) como se citó en Jaramillo (2011), “cuando los saberes escolares desconocen o deslegitan otra forma de conocimientos y de saberes se genera una forma de exclusión social, pues esto conlleva a la deslegitimación de las prácticas sociales que dan sustento a dichos saberes” (p. 17). Aquí se resalta la importancia de reconocer las prácticas propias de cada grupo social y que dentro de esta propuesta cobran vida.

Es por eso, que el propósito de este trabajo de profundización es analizar la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá, sede Mantagorda.

Con referencia a lo anterior, en esta comunidad rural existen diferentes situaciones del contexto donde la medición se encuentra presente, por ejemplo la siembra de diversos productos como el maíz y el arroz, prácticas a través de las cuales emergen elementos del pensamiento métrico como patrones e instrumentos no convencionales de medición que fueron el foco de atención de este trabajo, pues han sido elementos autóctonos y cotidianos, del contexto de los estudiantes, los cuales pueden hacer parte de la construcción del concepto de medida en la escuela y de procesos inherentes a él.

La construcción del concepto de medida de magnitudes en la escuela, se puede decir que hace parte de los contenidos que tradicionalmente han sido abordados en la enseñanza de las
matemáticas, y ha sido desarrollado tanto en la básica primaria como en la secundaria. Poder medir magnitudes es fundamental para que las personas puedan comprender lo que sucede a su alrededor, al respecto Chamorro (2004) plantea que:

La medida es el medio de control por excelencia que va a permitir a las personas interpretar la realidad y criticarla a partir de datos. Esto hace que la medida se elija como instrumento fundamental en relación con otras áreas del currículo, permitiendo un mejor tratamiento de ejes trasversales. (p. 223)

De modo que, la enseñanza de la medida en la escuela no se puede limitar a la aplicación de fórmulas y simbolismos que en la mayoría de los casos carecen de significado. Por su parte, Moreno, Bulla, Giraldo, y Mantilla, (1998) y Guillen (2010) como se citaron en Rivera, Londoño, y Jaramillo (2016), coinciden en afirmar que, en muchos casos, las matemáticas se han fundamentado desde el concepto y la rigurosidad, sin tener en cuenta su relación estrecha con el contexto. Por el contrario, la enseñanza de la medida debe contribuir a la interpretación de la realidad circundante.

De acuerdo con las consideraciones que se han expuesto hasta el momento, se percibió una clara necesidad de articular aspectos socioculturales presentes en las comunidades a los procesos matemáticos. Es inminente que la escuela cambie la mirada hacia la enseñanza y aprendizaje de la medición evitando focalizarse de forma exclusiva como plantea Chamorro (2003) en la reducción de los problemas sobre la medida a meros problemas aritméticos; sino que debe articularse al conocimiento de las magnitudes a medir a partir de la vinculación del contexto emergente a la actividad escolar. El conocimiento de la medida es esencial para que el individuo pueda interpretar su contexto, por lo tanto, hay que examinar qué elementos se han construido en su comunidad y que hacen parte de su cotidianidad.

En este sentido, la etnomatemática7 pone en evidencia, la manera “como los conocimientos son constituidos, validados y legitimados por medio de las prácticas sociales en grupos socioculturales” (Peña, Tamayo y Parra, 2015, p. 144). Por su parte, el MEN (1998, p.

7 Este concepto se ampliará en el marco teórico.
afirma que “la interacción dinámica que genera el proceso de medir entre el entorno y los estudiantes, hace que estos encuentren situaciones de utilidad y aplicaciones prácticas donde una vez más cobran sentido las matemáticas”, lo cual pone de relieve la importancia que juega el contexto y las prácticas que allí puedan tener lugar en los procesos de construcción de conocimiento objeto de estudio.

En relación con los planteamientos anteriormente expuestos, esta propuesta es relevante para la didáctica de las matemáticas, inicialmente en la institución educativa eje del proyecto, ya que aporta elementos de reflexión y análisis en torno a la manera como los estudiantes pueden aprender desde el reconocimiento de las prácticas socioculturales de su contexto el concepto de medición.

Por otra parte, desde el quehacer docente se motiva el desarrollo de prácticas pedagógicas diferentes, mediante las cuales se aprovechen las situaciones que se desarrollan en el contexto y que sirven de escenario para promover mejores aprendizajes. En este sentido, el presente trabajo se puede convertir en una herramienta de apoyo para la institución en relación con el pensamiento métrico y la construcción del concepto de medida.

La región del Urabá es una zona rica en diversidad cultural y étnica, por lo tanto, desde este proceso investigativo se pretende proyectar esta experiencia como marco de referencia que permita la articulación del saber matemático con la cultura, vinculando el lenguaje y los instrumentos cotidianos de medida para que estos se conviertan en eje transversal y dinamizador del conocimiento en la escuela y aporten elementos para la resolución de diversas situaciones en las cuales la noción de medida tenga lugar.
2. MARCO TEÓRICO

Los procesos de medición son un elemento importante en torno al tratamiento de la medida en la escuela. No obstante, en los establecimientos educativos no se presta mucha atención a las situaciones que desde el contexto y desde las prácticas socioculturales, pueden ser aprovechadas para que el proceso de enseñanza y aprendizaje de la medida se vea favorecido. Es por eso, que en este apartado se muestra como desde algunos antecedentes se pueden establecer estas relaciones. Para el caso de este trabajo de profundización, se consideró necesario reconocer que los procesos de medición: percepción, comparación y estimación, en juego con unas unidades de medida propias dentro de la práctica sociocultural del cultivo de arroz, que desde la mirada de la etnomatemática se validan y adquieren importancia dentro de las prácticas escolares.

2.1. Antecedentes

En Colombia se han realizado varios trabajos de investigación relacionados con el desarrollo de los procesos de medición aprovechando situaciones del contexto. Por ejemplo, las investigaciones de Rivera (2014), Higuaíta (2014), Fuentes (2013) y Gavarrete (2012), ponen de manifiesto la relación entre las matemáticas, el contexto y las prácticas socioculturales.

En primer lugar, la propuesta investigativa de Rivera (2014) plantea una reflexión sobre la manera como los estudiantes construyeron modelos matemáticos a través de la medida del área y el volumen emergentes del contexto. En este trabajo se evidenció cómo los ambientes enmarcados en el contexto de las inundaciones que afectan a una Institución Educativa, y en general a una comunidad, se convirtieron en espacios propicios y puntos de partida para que los estudiantes se aproximaran a las matemáticas.

Los estudiantes participaron en la exploración de fenómenos de su contexto, con lo cual se facilitó la lectura y comprensión matemática de las situaciones del contexto a través de la modelación. Es importante rescatar para el presente proyecto de profundización, la valoración que hizo Rivera (2014) del contexto extraescolar, y cómo este se puede enlazar con las diferentes
prácticas escolares de tal manera que generen mejores aprendizajes con el fin de promover el reconocimiento y planteamiento de situaciones del contexto.

Por su parte, la investigación realizada por Higuita (2014) se propuso desde una perspectiva sociocultural de la educación matemática, específicamente a partir de la etnomatemática y la educación indígena; mediante la cual se pretendió analizar y problematizar la movilización de los objetos culturales que giran en torno a la práctica inherente a la construcción de la vivienda tradicional Embera Chamí, con el fin de re-pensar el porvenir de la educación matemática indígena.

A partir de los registros de este estudio, se hizo visible el posicionamiento cultural, político y simbólico de esta comunidad indígena mediante la movilización de objetos culturales mediados por nociones como medida, número y forma; lo cual posibilitó una reflexión que permitiera re-pensar el porvenir de la educación matemática indígena. La comprensión de esta movilización de objetos culturales permeó un proceso de identificación de la comunidad, no solo entre los indígenas sino también con el otro no indígena; en esta perspectiva, el maestro no sería el detector del conocimiento, de la sabiduría, sino que tejería diálogos por fuera de la escuela, es decir, con los líderes de su comunidad, de otras comunidades indígenas y no indígenas. Este trabajo permitió a los docentes investigadores del proyecto de profundización, reflexionar alrededor de la relación dialógica entre el quehacer pedagógico y las prácticas socioculturales que circundan la escuela y hacen parte de las vivencias del estudiante. Por lo tanto, se propone mostrar una estrategia didáctica a través de la cual el maestro de la sede Mantagorda tenga presente en sus prácticas de aula el reconocimiento de la comunidad y todos los aspectos socioculturales que en ella emergen.

Otro trabajo, es el de Fuentes (2013), donde se muestran relaciones fundamentales entre la etnomatemática y la escuela, basándose en un análisis bibliográfico de autores que relacionan estos conceptos donde el mayor hallazgo se encuentra en la importancia del rol de la etnomatemática en la práctica pedagógica a partir de las prácticas socioculturales.
Según el autor, la Etnomatemática pretende enfrentar diferentes problemáticas escolares, entre estas el fracaso escolar, la exclusión social, la intolerancia y el irrespeto de la diferencia lo que empoderaría la etnomatemática como un instrumento transformador de las relaciones sociales y culturales.

De acuerdo con lo anterior, la Etnomatemática puede aportar significativamente en la escuela a partir de tres grandes categorías, que son: el proceso de conocimiento y valorización de la cultura propia de los estudiantes, el apoyo como facilitadora de relaciones sociales en el aula por medio del fomento de la tolerancia y la comprensión entre puntos de vista diferentes, entre las matemáticas locales y universales.

Desde esta misma perspectiva sociocultural, Jaramillo, Torres y Villamil (2016) desarrollaron una investigación titulada Interacciones en clase de matemáticas: una mirada desde la etnomatemática. En este trabajo se teje una discusión académica encaminada a analizar las interacciones que se realizan al interior de la clase de matemáticas, lo que permitió una identificar la relación existente entre el contexto sociocultural del estudiante y el aprendizaje de la matemática en la escuela. En su propuesta, además, se presentan orientaciones para los docentes de Matemáticas de la manera como se pueden reorganizar el currículo desde esta perspectiva.

En cuanto a estudios internacionales sobre la matemática aplicada al contexto se refiere, Gavarrete (2012) en su tesis doctoral, consideró que los docentes en formación necesitaban reflexionar sobre las aplicaciones de las matemáticas en situaciones cotidianas y además debían establecer relaciones que les permitiera identificar la presencia de conocimientos matemáticos a partir del bagaje ancestral indígena, con el fin de promover un aprendizaje significativo para los estudiantes de las escuelas indígenas. De este trabajo se retomó la importancia de la planificación de herramientas metodológicas que le permitan al docente utilizar la matemáticas alusiva al contexto extra escolar, enfocada en la construcción de aprendizajes significativos.

Los trabajos mencionados anteriormente, permiten observar cómo el contexto juega un papel preponderante en los procesos de enseñanza y aprendizaje de las matemáticas. A su vez, se
resalta la manera cómo a partir de las prácticas socioculturales se puede generar conocimiento matemático. El presente trabajo, que fue planteado desde una perspectiva sociocultural, propicia el encuentro armonioso y asertivo entre conceptos matemáticos inherentes al contexto extracurricular y las prácticas de aula, permitiéndole al estudiante valorar su cultura y generar conocimiento a través de ella.

2.2. **Sobre los procesos de medición**

En el siguiente apartado se presentan los elementos centrales del marco teórico de esta investigación a partir de tres ejes temáticos: procesos de medición, unidades de medidas y etnomatemática.

2.2.1. Procesos de medición.

Los procesos de medición tienen sus orígenes en las relaciones del hombre con la naturaleza, es esa interacción dinámica la que hace que este encuentre situaciones en las cuales cobran sentido las matemáticas a través de su practicidad y aplicabilidad. A propósito, MEN (1998), plantea que actividades de la vida diaria como las compras, la preparación de un terreno para la siembra, el transporte, permiten desarrollar conceptos y destrezas matemáticas puesto que posibilitan el conteo, la medición y el cálculo de cantidades; como también el acercamiento a las características de objetos tangibles en la vida diaria. Sin embargo, cuando no se permite al estudiante conocer el impacto histórico de la medida, se evidencian dificultades en la percepción sobre la necesidad misma de medir y de reconocer cómo la medida surgió de “una noción de igualdad socialmente aceptada” (p. 62).

Algunos investigadores afirman que los niños no tienen conciencia sobre las sutilezas de la noción de replicación de la unidad, es decir, la repetición de una única unidad de medida, a partir de lo cual el hombre ha llegado al número y al recuento; hecho del cual surgió la necesidad de crear patrones de medida fijos.
Al respecto, Osborne (1976) citado por el MEN (1998, p. 62), afirma:

[...] en las escuelas actuales, gran parte de lo que se aprende sobre medición es de naturaleza puramente incidental. Los conceptos de medida aparecen en situaciones cuyo propósito es enseñar y aprender sobre el número. Se supone que la medida es intuitiva y está lo suficientemente poseída y comprendida por los alumnos como para servir de marco intuitivo en cuyo seno explicar las operaciones aritméticas. Tal presunción ha de ser puesta en tela de juicio. Además, la naturaleza de la forma en que los niños aprenden a medir y se valen de medidas en el contexto de esta transferencia exige cuidadosa atención.

En consecuencia, Chamorro (2003) afirma que los procesos de medición en los estudiantes comienzan con unas primeras acciones a través de expresiones codificadas como más o menos, mucho o poco, grande o pequeño, en clasificaciones siempre relacionadas de alguna forma con imágenes espaciales, esto es con modelos geométricos, aún en el caso del tiempo. En este trabajo se hizo mayor énfasis en los procesos de estimación y comparación, haciendo un reconocimiento inicial de la percepción como un camino esencial en la construcción del concepto de medida en la edad inicial.

Según Godino, Batanero y Roa (2002), los niños aprenden a medir a través de procesos que involucran destrezas sensoriales y perceptivas con aspectos geométricos y aritméticos, estos procesos de medición se inician con la percepción seguida de la comparación, la estimación, búsqueda de un referente y la medición como un sistema. De acuerdo con los planteamientos anteriores, en la construcción de la medición existen varios procesos, pero para efectos de este trabajo se centró la atención en los procesos de percepción, comparación y estimación.

2.2.1.1. Percepción.

En el proceso de la percepción se ponen en juego referentes ideológicos y culturales que reproducen y explican la realidad, los cuales son aplicados a las distintas experiencias cotidianas
para ordenarlas y transformarlas. Cabe resaltar que uno de los elementos importantes que definen la percepción, es el reconocimiento de las experiencias cotidianas.

El reconocimiento es un proceso involucrado en la percepción, porque permite evocar experiencias y conocimientos previamente adquiridos a lo largo de la vida, con los cuales se comparan las nuevas experiencias, lo que permite identificarlas y aprehenderlas para interactuar con el entorno. Según Chamorro (2005), la construcción de diversos tipos de representación espacial se fundamenta sobre codificaciones de la realidad, dando lugar a términos lingüísticos para indicar el lugar o la orientación de diversos entes contenidos en el mismo.

Generalmente esas codificaciones se organizan por parejas de expresiones que se contraponen, que pueden ser absolutas o relativas dependiendo si hay o no un elemento de referencia. Chamorro (2005) clasifica los términos que pertenecen a uno u otro tipo de contraposición:

Contraposiciones relativas: Encima de – debajo de, a la derecha de – a la izquierda de, más cerca que – más lejos que, delante de – detrás de. (p. 276)

Según Chamorro (2003), una de las primeras etapas de la progresión en la enseñanza de las magnitudes es la estimación sensorial, para la cual los sentidos deben proporcionar las informaciones pertinentes para decantar el atributo medible del resto de los que concurren en los objetos, es decir, se trata de aislar el atributo que define la magnitud. El estudiante debe aprender a observar lo necesario, separando las informaciones pertinentes de las interferencias.

Al respecto, Godino, Batanero y Roa (2002), expresan que la medición comienza con la percepción de lo que debe ser medido y por lo tanto la enseñanza de la medición debe apoyarse en las ideas intuitivas de los alumnos y de sus ideas informales de medición para ayudarles a comprender los atributos que se miden y lo que significa medir. Se entiende la percepción como
el proceso inicial en la construcción de la medida, direccionada por los sentidos que permiten observar y palpar las cualidades susceptibles de medición.

2.2.1.2. Comparación.

El proceso de comparación sigue a la percepción y está ligado al proceso de estimación, ya que para que un individuo, en este caso, el estudiante, realice una estimación, primero percibe las cualidades del objeto y luego lo compara con otro que tiene propiedades similares, a partir de lo cual infiere su posible medida.

Chamorro (2005) define la evolución del proceso de construcción de una determinada magnitud a partir de la maduración y experiencias que tengan lugar en el niño:

Comparación perceptiva directa: El niño no recurre a ninguna medida común ni desplazamiento. Compara de forma perceptiva, visual, táctil, etc. Al final de esta etapa, si la percepción directa no le da información suficiente, utiliza ya intermediarios compuestos por ciertas partes de su cuerpo (por ejemplo, manos o pies, en el caso de la longitud) simplemente como un apoyo a la percepción.

Desplazamiento de objetos: El niño necesita precisar más en las comparaciones, por lo que traslada uno de los objetos para aproximarlo lo suficiente, y así poder extraer informaciones perceptivas suficientes. Si la aproximación no es posible, se ayuda de un intermediario para la comparación. Al final de esta etapa el niño ya utiliza algún intermediario independiente de su propio cuerpo.

Operatividad de la propiedad transitiva: Comparaciones indirectas, el niño es capaz de construir razonamientos como: «Si \(a = b\) y \(b = c\) entonces \(a = c\)». (p. 319)

Godino, Batanero y Roa (2002) expresan que la comparación de dos objetos es adecuada cuando se pretende hacer enunciados de equivalencia o no equivalencia, por ejemplo: "Tú eres más alta que yo", "Yo soy más alto que mi hermana pequeña". Esto sirve bien para comparaciones iniciales, incluso pueden servir para comparaciones lógicas con terceras partes.
D'Ambrosio (2007) distingue ocho tipos de prácticas para describir el saber hacer matemático que es contextualizado y responde a factores naturales y sociales que permiten encontrar explicaciones y definir estrategias para lidiar con el ambiente inmediato y remoto, dichas prácticas matemáticas son: comparar, clasificar, cuantificar, medir, explicar, generalizar, inferir y evaluar. Según lo anterior, se puede decir que este proceso de comparación es un proceso común en todas las culturas e históricamente ha sido practicado por el ser humano.

En este trabajo se asumió la comparación como una consecuencia de la percepción, a través de la cual se buscan relaciones entre objetos que tienen la misma propiedad, este proceso conduce a la necesidad de un estándar que se pueda aplicar sucesivamente, es decir, implica la construcción de sistemas de referencias.

2.2.1.3. Estimación.

La estimación “es el proceso de llegar a una medida sin la ayuda de instrumentos de medición, es un proceso mental, aunque frecuentemente hay aspectos visuales y manipulativos en él” Bright (1976) como se citó en MEN, (1998, p. 66). Por su parte, Segovia et al. (1989) como se citó en Segovia y Castro (2009), presentan una definición de la estimación en general como competencia necesaria para el desarrollo de las matemáticas, pero también hacen distinción entre la estimación en el campo numérico y la estimación concerniente a la medición:

La estimación en cálculo, hace referencia a las operaciones aritméticas y a los juicios que pueden establecerse sobre sus resultados, mientras que la estimación en torno a las medidas concierne a los juicios que pueden establecerse sobre el valor de una determinada cantidad o bien la valoración que puede hacerse sobre el resultado de una medida. Dentro de la estimación en medida se distinguen dos grupos de magnitudes: continuas y discretas. Por ejemplo, una estimación, para el caso de magnitudes continuas, es la valoración que se hace sobre la estatura de una persona cuando se compara con la propia; para el caso de magnitudes discretas es la estimación del número de personas que asisten a una manifestación. Para efectos de este trabajo se puntualizó en la estimación referida a las medidas (Segovia, Castro y Rico, 1989, p.276).
En consecuencia, a lo expuesto por Bright (1976), como se citó en MEN (1998), estimar una cantidad es el proceso de obtener una medida sin ayuda de instrumentos, es decir, consiste en realizar juicios subjetivos sobre la medida de los objetos. También se puede decir que es la medida realizada al ojo, en relación a una cualidad de un objeto (Godino, Batanero y Roa, 2002).

La medida de una magnitud, según Chamorro y Belmonte (1988, p. 45), es una actividad que requiere una gran experiencia en la práctica de estimaciones, clasificaciones y seriaciones. Es decir, para encontrar la medida de una magnitud por medio de la estimación, es necesario percibir las características y propiedades de dicha magnitud y a la vez las características de las propiedades de la práctica de las estimaciones.

Bishop (2001) afirma que el proceso de estimación de una magnitud requiere los procesos de comparar, ordenar y valorar. Al respecto, Hildreth (1983) como se citó en Pizarro y Albarracín (2015), expresan que el proceso de estimación es una acción compleja que involucra diferentes habilidades, como el manejo del concepto de unidad, la imagen mental de la unidad, la comparación, la iteración de la unidad y la utilización de estrategias para estimar.

En conclusión, la estimación es un juicio sobre el valor del resultado de una operación numérica o de la medida de una cantidad, en función de circunstancias individuales de quien lo emite, y está referida a los juicios que pueden establecerse sobre el valor de una determinada cantidad o bien la valoración que puede hacerse sobre el resultado de una medida.

2.2.2. Unidad de medida.

Kula (1998), expresa que las medidas de las Sociedades Primitivas, las Europeas de la Alta Edad Media, y las Populares que se conocen por descubrimientos etnográficos, poseen un sentido social definido y responden a diferentes tamaños con las transformaciones que han tenido a lo largo del tiempo. El primer periodo evolutivo de la metrología del hombre es el antropométrico en el que las unidades básicas de las medidas son las partes del cuerpo humano; y en el siguiente periodo, el ser humano busca sus unidades de medición en las situaciones, objetos
y resultados de la labor diaria. Es de resaltar, además, la importancia de comprender el contenido social que se esconde en cada sistema de medida utilizado por el hombre a través de los tiempos.

En consecuencia, la creación de medida requiere de una actividad mental compleja. Se basa en la elección abstracta de una de las características propias de unos objetos dados y la comparación de estos con relación a aquella, por ejemplo, en la medición de los granos. Al respecto, Kula (1998) manifiesta que:

Los métodos de verter el grano en la medida permitían que cuanto mayor sea la potencia con la que el grano se vierta en el recipiente, mayor será la cantidad de cereal que quepa en la medida, porque los granos estarán más apretados. La potencia de la caída está en relación directa con la altura de la cual se vierte, por la acción de la gravedad (p. 62).

En la misma línea, Posada et al. (2006), expresa que las unidades de medida se pueden tomar como no convencionales cuando son aceptadas y reconocidas por un grupo social o comunidad, a diferencia de las estandarizadas que son elaboradas de acuerdo con un modelo o patrón universal. En este proyecto desde, la perspectiva sociocultural, se abordaron las unidades de medidas no convencionales que son usadas por los miembros de la comunidad de Mantagorda; estas medidas son utilizadas en diferentes momentos del cultivo del arroz con la intencionalidad de en el campo, para la semilla, entre otros. Estas unidades de medida son:

- **Cuarta:** Corresponde a la longitud de una mano abierta, desde la punta del dedo pulgar hasta la punta del dedo meñique. Unidad de medida que es utilizada para medir la distancia entre huecos en la siembra del arroz.
- **Jeme:** Es la distancia que va desde la punta del dedo pulgar hasta la punta del dedo índice manteniendo los dedos bien extendidos. Tanto la cuarta como el jeme son utilizados en labores de siembra.
- **Pie:** Equivale a la distancia que va desde el talón hasta la punta del mismo pie o extremo del pulgar, es utilizada para medir longitudes en diferentes actividades agrícolas.
- **Puño de arroz:** Es una unidad de medida representativa de la siembra del arroz, la cual corresponde al número de espigas que caben en la mano del cultivador y su equivalencia es entre siete y ocho kilogramos.
• **Espeque:** Instrumento de medida no convencional utilizado para estimar la profundidad de los huecos donde se deposita la semilla al sembrar el arroz. Es un instrumento de elaboración artesanal a cargo de los miembros de la comunidad de esta región.

• **Lata:** Instrumento de medida no convencional usado para medir cierta cantidad de arroz y equivale a una libra aproximadamente.

Los instrumentos estandarizados o convencionales son de poco uso en las labores de la siembra de arroz, pero son reconocidos y utilizados por los estudiantes en la escuela para la medición de longitudes. Esta es una razón por la cual cobró sentido este proyecto de profundización, pues se buscó familiarizar a los estudiantes con los instrumentos no convencionales y sus equivalencias, debido a su carácter de practicidad cotidiana.

Si bien es cierto que, en la medida se debe expresar o reflejar lo más exactamente posible la cantidad de una magnitud, es necesario aclarar que un número y la aproximación al valor verdadero o valor real depende de la sensibilidad del patrón utilizado y del proceso de medida. No obstante, Bishop (2005) define la acción de medir de la siguiente manera:

Es otra actividad universalmente significativa para el desarrollo de las ideas matemáticas. Tiene que ver con comparar, ordenar y asignar valor; y todas las sociedades valoran ciertas cosas. La gente mide mediante una imagen mental o ‘a ojo’. Prácticamente no hay alguien aquí que no pueda comprar una prenda de vestir para algún familiar simplemente mirando el artículo, casi siempre compran la talla correcta (p. 23).

Tomando como referente lo anterior, cabe decir que se deja abierta la posibilidad de que la medida también se pueda dar en valores aproximados, es decir, que no siempre el resultado de medir una cantidad sea una medida exacta.

Con relación a lo expuesto hasta aquí y para efectos de esta propuesta de profundización, se retoma el concepto que define la medida como aquello que precisa un número a través del cual se puede cuantificar una magnitud. La medida es el resultado de medir, es decir, de
comparar y estimar la cantidad de magnitud que se quiere medir con la unidad de esa magnitud. Las mediciones han sido escritas o dibujadas como tradición ancestral en muchas culturas y es una habilidad que todas las personas desarrollan a partir de unidades de referencia, tanto tangibles como intangibles.

2.3. Etnomatemática

Las nociones desde la etnomatemática occidental, relacionadas con medir, involucran otras nociones como longitud, área, volumen, tiempo, temperatura, peso, desarrollo de unidades – convencional, estándar – sistema métrico, instrumentos de medición, estimación, aproximaciones y errores; y con procesos como comparar y ordenar, entre otros.

D’Ambrosio, define la etnomatemática como “la matemática que se practica entre grupos culturales identificables, tales como sociedades de tribus nacionales, grupos laborales, niños de cierto rango de edades, clases profesionales, entre otros” (1997, p.13). De igual manera, White (1988), como se citó en Gavarrete (2012) señala que para la etnomatemática “[…] las matemáticas se consideran como un constructo social y humano, que responde a las necesidades particulares de una sociedad en espacios y tiempos diferentes” (p. 72). Es comúnmente aceptado que una comunidad desarrolle prácticas y reglas matemáticas con su propia lógica para entender, lidiar y manejar la naturaleza, es decir, la relación del hombre con la naturaleza es la que impulsa el desarrollo matemático, y es el hombre mismo, quien en esa relación construye las nociones matemáticas que le van a ser de utilidad a él y a su sociedad.

Suárez, Acevedo y Huertas (2009), esbozan al interior del el Grupo de Estudio sobre Etnomatemática (ISGEm), se argumentó lo siguiente frente a la etnomatemática refiriéndose a ella como:

Una combinación de la matemática y la antropología cultural. A un nivel que es lo que se pudiera llamar “la matemática del ambiente” o “la matemática de la comunidad”. A otro nivel de relación, la etnomatemática es la manera particular en que grupos culturales específicos cumplen las tareas de clasificar, ordenar y medir. (p. 21)
D’Ambrosio (2008) como se citó en Gavarrete (2012), defiende que la especie humana recurre a los recuerdos de soluciones para eventos complejos de su historia cuando se enfrenta con situaciones problemáticas nuevas; es decir, que la sobrevivencia y la trascendencia constituyen la esencia del ser humano como especie humana y la planificación del proceso de sobrevivencia demarca la trascendencia del ser, pues se reúne la experiencia de situaciones anteriores y se adapta a las nuevas circunstancias, con lo cual se incorpora a la memoria nuevos hechos y saberes. Aunque el conocimiento se genera individualmente, la comunicación hace que ese conocimiento sea enriquecido por la información percibida por el otro.

White (1988), plantea que las matemáticas son una parte de la cultura dado que aporta parte de la herencia de conocimiento de un pueblo para la sobrevivencia. Estos conocimientos heredados y la interacción de los conocimientos personales contribuyen a generar el conjunto de conocimientos compartidos y comportamientos compatibilizados que son subordinados a unos parámetros que se establecen como ‘valores culturales’, a través de los cuales se conduce o guía la cultura de grupo (D’Ambrosio, 2008)

En una misma cultura, los individuos dan las mismas explicaciones y utilizan los mismos instrumentos materiales e intelectuales para resolver sus situaciones cotidianas. D’Ambrosio (2008, p. 7) establece que el conjunto de esos instrumentos y técnicas (tica) se manifiesta en el compartir la ‘matema’, propia del grupo (etno), es decir en su etnomatemática. Cada civilización históricamente ha desarrollado, de acuerdo con su contexto y sus condiciones, su propia manera de conocer.

Asumiendo la etnomatemática como la matemática practicada por un grupo cultural, en este trabajo se reconocen construcciones propias de la comunidad de Mantagorda y cómo ella conoce y asimila los procesos de medición en la práctica sociocultural del cultivo de arroz.

2.4. Práctica sociocultural
White (1988), afirma que los conceptos matemáticos tienen su origen y su locus\(^8\) en la cultura, el cuerpo de la conducta y pensamientos tradicionales de la especie humana. Históricamente cada uno de los inventos, avances o descubrimientos son el producto de la especie humana, pero son construidos, por cada individuo en la cultura matemática dentro de la cual se formó y el proceso de crecimiento matemático es un proceso de interacción de elementos matemáticos. Al respecto manifiesta que:

Las verdades matemáticas existen en la tradición cultural dentro de la que ha nacido el individuo, y de esa manera penetran en su mente desde afuera. Pero aparte de la tradición cultural, los conceptos matemáticos no tienen existencia ni significado y por supuesto, la tradición cultural no tiene existencia aparte de la especie humana. Las realidades matemáticas tienen así una existencia independiente de la mente individual, pero dependen por completo de la mente de la especie. O para traducirlo con términos antropológicos: las matemáticas en su totalidad, en sus ‘verdades’ y ‘realidades’, son una parte de la cultura humana, nada más. Todo individuo nace en una cultura que ya existía y que es independiente de él. Los rasgos culturales tienen una existencia por fuera de la mente individual e independiente de ella. El individuo adquiere su cultura mediante el aprendizaje de las costumbres, creencias, técnicas de su grupo. Pero la cultura misma no tiene, ni es posible que así sea, existencia aparte de la especie humana. Las matemáticas-al igual que el idioma, instituciones, herramientas, las artes, etc., son, por lo tanto, el producto acumulado de los muchos esfuerzos hechos por la especie humana a través de los tiempos (White, 1988, p. 345).

\(^8\) El ‘locus’ o lugar de la realidad matemática es la tradición cultural, es decir el ‘continuum’ de conducta expresada por símbolos. Esta teoría ilumina también el fenómeno de la novedad y progreso de las matemáticas. […] Los conceptos matemáticos son independientes de la mente individual, pero residen plenamente en la mente de la especie, es decir, en la cultura. Los inventos y descubrimientos matemáticos no son más que dos aspectos de un hecho que simultáneamente ha tenido lugar en la tradición cultural y en uno o más sistemas nerviosos humanos. De estos factores, la cultura es el más significativo; allí residen los determinantes de la evolución matemática. El sistema nervioso humano es meramente el catalizador que ha hecho posible el proceso cultural (White, 1988, p.362).
De acuerdo con el autor, se puede afirmar que las matemáticas son naturalmente una parte de la cultura y que forman parte del bagaje de conocimiento que un pueblo hereda de sus ancestros y del cual forman parte las tradiciones, las maneras de sobrevivencia (como sembrar o cocinar), las formas de concebir las relaciones sociales (ritos, celebraciones), los mitos (cosmogonías, creencias y religiones), etc. En cada uno de los componentes de esa herencia cultural figuran maneras de contar, calcular, medir, inferir, localizar, relacionar, diseñar, explicar, deducir; en fin, procesos que resultan estableciéndose como formas de pensamiento matemático, pues la conducta matemática es construida por la cultura que la posee.

D'Ambrosio (2005a) considera la cultura como el conocimiento generado por la interacción común que es el resultado de la comunicación social organizada en un sistema intelectualmente admitido de códigos, símbolos y significados otorgados a un conjunto de mitos, valores, normas de comportamiento y estilos de conocimientos compartidos por las personas que viven en un momento y un espacio determinado. Es decir, la cultura comprende un conjunto de rasgos distintivos, espirituales, materiales, intelectuales, afectivos que caracterizan un grupo social y es transmitida por los ancestros a través de la herencia tradicional.

La comunidad de Mantagorda posee un saber cultural que ha sido multiplicado y transmitido a través de las generaciones gracias a los procesos convivenciales y el lenguaje. Al respecto, Oliveras (2000), plantea que la convivencia estimula la creatividad y las relaciones que de allí surgen la comunicación y elaboración de abstracciones que forman parte del saber cultural común. El autor establece que ese saber común en muchas culturas les ha permitido contar, medir, razonar, establecer situaciones, descripciones de los entornos físicos, con signos especiales y otras explicaciones simbólicas, con expresiones abstractas, generando un conocimiento que se ha llamado matemático.

Es importante para este proyecto, el reconocimiento de esos significados compartidos con los que interactúan los miembros de esta comunidad para la supervivencia, a través de los cuales se percibe e interpreta la realidad permeada por la actividad de cultivar arroz.
2.5. **Práctica escolar**

El MEN (1998) plantea trabajar con el contexto extraescolar, entendiendo el contexto como los ambientes que rodean al estudiante y que le dan sentido a las matemáticas que aprende. En efecto, se puede observar cómo desde este documento se desarrollan lineamientos que hacen referencia a los componentes del pensamiento métrico y los sistemas de medida a partir de las prácticas cotidianas de los estudiantes.

La interacción dinámica entre el contexto y los estudiantes que se genera a partir del proceso de medir, hace que estos apliquen sus conocimientos en situaciones cotidianas, lo cual dota de mayor sentido el estudio de las matemáticas. Al respecto, el MEN (1998) hace alusión a que a partir de “Actividades de la vida diaria relacionadas con las compras en el supermercado, la cocina, los deportes, la lectura de mapas, la construcción, etc., acercan a los estudiantes a la medición y les permiten desarrollar muchos conceptos y destrezas matemáticas” (p.68)

Según D’Ambrosio (2005a), la relación entre la Educación Matemática y la Etnomatemática ocurre naturalmente dado que es una forma de preparar a los individuos con un sentido de ciudadanía crítica, para vivir en sociedad al mismo tiempo que desarrollan su creatividad. Así, desde esta perspectiva se propone una pedagogía dinámica que responde a las necesidades ambientales, sociales, culturales y que brinda espacio a la imaginación y a la creatividad. Es por esto que, según el autor, la pedagogía deberá estar basada en observaciones, lectura de periódicos, juegos, películas, actividades en el campo, entre otros elementos que hacen parte de lo cotidiano y que tienen importantes componentes matemáticos.

La Educación Matemática Cultural está vinculada con la matemática escolar, pues como afirma D’Ambrosio (2008), citado en Gavarrete (2012), “con este vínculo se contribuye a estimular el desempeño individual y colectivo, con el fin de prevalecer como grupos culturales y avanzar en el cumplimiento de las necesidades de supervivencia y de trascendencia” (p.80)

A diferencia de la práctica sociocultural que le permite al individuo organizar la información ancestral a través de patrones y símbolos relacionados con el mundo concreto,
vinculando los procesos de supervivencia y trascendencia con la manera de comprender el mundo y sus relaciones; las prácticas escolares son entendidas como una disciplina que se ha denominado Matemáticas. En tanto disciplina, gana rigurosidad, pero puede perder la permeabilidad de aspectos tangibles de la realidad. Es por ello, que mediante este proyecto se propendió por la articulación de ambos enfoques, tomando lo más relevante de cada uno.

D’Ambrosio (2005b) entiende la matemática como una estrategia desarrollada por la especie humana a lo largo de su historia para explicar, para entender, para manejar y para convivir con la realidad sensible, perceptible y con su imaginación, de manera natural dentro de un contexto ambiental y cultural. Además, D’Ambrosio (2005a) considera que la matemática es un “instrumento importante para mejorar la calidad de vida y la dignidad en las relaciones humanas, así como también es el soporte de los instrumentos intelectuales y materiales propios de una cultura” (p. 64).

Este trabajo asume la práctica escolar como un camino que puede llegar a ser una herramienta que permita establecer relaciones con la práctica cultural de las matemáticas, con el fin de expresar y explicar diferentes maneras de concebir el mundo y sus relaciones a partir de la valoración y el reconocimiento del entorno.

2.6. El Proyecto de aula

Un proyecto de aula es una estrategia pedagógica que permite generar espacios de aprendizaje de una temática surgida dentro del aula hacia un mejoramiento de los procesos de enseñanza y aprendizaje, que vinculan la matemática con el conocimiento cultural que rodea al estudiante.

Al respecto Bishop (1995) plantea que para desarrollar actividades de matemáticas en la escuela bajo una perspectiva sociocultural en el marco de un proyecto de aula se debe tener en cuenta que: El significado y el contenido de una actividad viene dado por su contexto, por lo tanto se debe utilizar al máximo posible el contexto cultural relacionado con dichas actividades, los conceptos matemáticos son representados de distintas maneras en todas las culturas, por lo
que en el planeamiento se deben incorporar recursos materiales contextualizados compatible con la realidad cultural e involucrar objetos de interés matemático de otras culturas o de la propia.

González (2001), considera que el proyecto de aula como estrategia didáctica posibilita las relaciones entre lo viejo y lo nuevo, lo conocido y lo desconocido, lo que fue y lo que será, entre el saber cotidiano y el saber científico. En este sentido el proyecto de aula busca curricularizar la experiencia cultural de la humanidad, de manera tal, que adquiera un sentido formativo con orientación específica.

De acuerdo con los planteamientos anteriores consideramos que la realización de proyectos de aula como estrategia pedagógica favorece la interacción y la socialización del conocimiento matemático, lo cual conduce a que el aprendizaje matemático sea significativo tomando como base de contextualización situaciones ligadas al diario vivir sociocultural del estudiante.
3. METODOLOGÍA

En este apartado se abordan los distintos momentos en que se desarrolló el proyecto de profundización. Aquí se hace la descripción de los procesos metodológicos, así como de las técnicas e instrumentos para la recolección de información utilizados, que de acuerdo con la pregunta y el objetivo general de permitieron un acercamiento a su resolución.

En primer lugar, esta propuesta se realizó a partir de los planteamientos del paradigma cualitativo, según los aportes de Sandoval (2002), Denzin y Lincoln (1994), Hernández, Fernández y Baptista (2014), desde este paradigma, el proceso de construcción de objetos de conocimiento, se alimenta constantemente a partir de la interacción del investigador con los actores que participaron del proceso.

Además, siendo que la naturaleza de la investigación cualitativa, es un desarrollo en espiral, esta permite regresar al campo de acción a retomar aquello, que quizás pasó desapercibido en un primer momento McMillan y Schumacher (2005). En este paradigma, el diseño es semiestructurado y flexible, por lo que permitió que surgieran cambios dentro del desarrollo de la propuesta.

Este trabajo estuvo enmarcado en las relaciones que los estudiantes pudiesen llegar a construir entre el conocimiento matemático que se construye en la práctica escolar y el existente en la práctica sociocultural del cultivo de arroz, en torno a los procesos de medición, para lo cual jugó un papel preponderante las experiencias de los estudiantes al hacerse partícipes del proceso. Es por eso que, para el desarrollo de la propuesta se planteó la aplicación de un proyecto de aula (ver anexo 1) que diera lugar a dichas relaciones.

A partir del desarrollo de este proyecto de aula, se reflexionó sobre las prácticas socioculturales, en especial la del cultivo de arroz, y reconocer en ella el potencial para poder generar conocimiento en la escuela. Dicho conocimiento en este caso, circula en torno a los procesos de medición que se encuentran inmersos dentro de esta práctica sociocultural, y que a
partir de su identificación pueden generar transformaciones en las concepciones del ámbito educativo y las dinámicas escolares de enseñanza de este concepto.

3.1. Enfoque

En concordancia con los aspectos inherentes a la investigación cualitativa, el enfoque seleccionado para esta propuesta investigativa fue el Crítico – Dialéctico. Al respecto, Sánchez (1998) afirma que desde este enfoque se busca la transformación de los sujetos y de sus realidades socioculturales. Para el caso de este trabajo, con el desarrollo del proyecto de aula se buscó que tanto docentes, estudiantes y padres de familia reflexionaran e identificaran el conocimiento matemático inherente a una de las prácticas socioculturales que en su comunidad tienen lugar, y el vínculo que se teje entre este y las prácticas escolares. Para el caso de este trabajo, la atención se centró en los procesos de medición presentes en la práctica sociocultural del cultivo de arroz.

Este enfoque se consideró pertinente, porque en un primer acercamiento con la comunidad se pudo constatar cómo, para ellos, las prácticas socioculturales se encuentran alejadas de las prácticas escolares, y desde las diferentes investigaciones que se han realizado en torno a la medida y desde la etnomátemática, se observó que los estudiantes pueden acceder al conocimiento de forma más significativa si reconocen su contexto y parten de este para generar conocimiento matemático.

3.2. Participantes

Para este trabajo de profundización, los participantes fueron los estudiantes de grado tercero de la Institución Educativa Santiago de Urabá sede Mantagorda, un padre de familia y agricultor de la localidad, la docente del grado y los docentes investigadores. A continuación se hace una descripción de los diferentes actores en esta propuesta:

Los estudiantes: las actividades realizadas a partir del proyecto de aula se llevaron a cabo con todos los estudiantes de grado tercero. Sin embargo, para el análisis del trabajo, del grupo de
diez niños se seleccionaron tres (Aníbal, Julián Camilo y Deiner)\(^9\), con los cuales se hizo un estudio intrínseco de casos\(^{10}\) según Stake (1999), puesto que guardan una característica común: al salir de la escuela, en horas de la tarde, participan del proceso del cultivo de arroz en sus hogares. Dichos estudiantes al tener conocimiento de las diferentes labores que se realizan a la hora de sembrar y cosechar el arroz, participaron activamente expresando lo que conocían cuando se plantearon las actividades del proyecto de aula. Su participación fue fundamental durante el desarrollo del proyecto de aula, tanto para la construcción y comparación de saberes como en el apoyo a sus compañeros.

El padre de Familia: el señor Wilfrido Silgado, quien autorizó la utilización de su nombre (ver anexo 3), Wilfrido es un líder de la comunidad que participa en las diferentes actividades que se llevan a cabo en la vereda. Es acudiente de un estudiante de grado quinto, y cuando se hizo la presentación del trabajo de profundización ante la comunidad, aceptó apoyar el proyecto con sus conocimientos referentes a la práctica sociocultural del cultivo de arroz. Es una persona dedicada a las actividades agrícolas desde niño, las cuales aprendió de su padre, mostrando la transmisión de saberes ancestrales en la comunidad de generación en generación, y la importancia que tiene para ellos la siembra y el cultivo de arroz para sobrevivir.

La docente de grado tercero: Katty Hernández quien también autorizo la utilización de sus datos (ver anexo 4), labora en el establecimiento educativo hace aproximadamente cuatro años. Su formación académica es en Licenciatura en Educación Física, ha participado en los diferentes los cursos sobre el programa Escuela Nueva que ofrece la secretaria de educación del municipio de Turbo, donde reside. Durante los días de actividad académica permanece en la Vereda. Es una docente que busca constantemente mejorar sus prácticas de aula, por eso, se hizo partícipe en el trabajo y apoyó la realización de las diferentes actividades planteadas en el proyecto de aula.

\(^9\) Los nombres de los estudiantes son reales y se utilizaron con autorización de los padres de familia (Ver anexo 2).

\(^{10}\) En el apartado de análisis de resultados se ampliará la información al respecto.
La docente Katty orienta sus clases desde el trabajo con las guías de aprendizaje de escuela nueva, para los grados de segundo a cuarto en un mismo salón de clases distribuyendo el tiempo en la atención de cada grupo de acuerdo al avance que presentan en las diferentes guías.

Los investigadores: Medardo y Luz Obdulia son docentes tutores del Programa Todos a Aprender, de dos entidades territoriales certificadas diferentes Antioquia y Turbo respectivamente. Como se mencionó en la contextualización uno acompaña a los docentes de la Institución Educativa América del municipio de Puerto Berrio, y el otro la Institución Educativa Santiago de Urabá en cuya sede Mantagorda acontece el presente trabajo.

3.3. Método

Teniendo en cuenta la pregunta de investigación: ¿Cómo favorecer la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá sede Mantagorda? y de acuerdo con la perspectiva cualitativa del trabajo, se asumió como método el propuesto desde la Investigación Acción Participativa11, que busca lograr cambios en los actores que participan del proceso.

Al respecto, Sirvent y Rigal (2012) definen la IAP como:

[...] Una investigación social científica con base empírica, realizada con una preocupación transformadora [...] en la que investigadores y participantes de una determinada situación problemática, se comunican y artican de modo cooperativo, para avanzar en el conocimiento crítico - conocimiento de ruptura, de superación de lo dado - de una determinada realidad, y proponer cursos de acción transformadora. (p. 26)

En el presente trabajo de profundización se identificó que los estudiantes presentaban dificultades en los procesos de aprendizaje relacionados con el tratamiento de la medida en la escuela. Esta problemática, se convirtió en preocupación de docentes investigadores, docentes y

11 En adelante se hará referencia a ella con la sigla IAP.
padres de familia, quienes unidos en torno a la práctica sociocultural del cultivo y desde la realización del proyecto de aula buscaron favorecer la construcción de procesos de medición presenten en dicha práctica.

A continuación, se presenta una figura con el esquema que para los autores Sirvent y Rigal (2012) representa el proceso colectivo de la IAP:

![Figura 7. Proceso Colectivo de la IAP, esquema tomado de Sirvent y Rigal (2012, p. 39)](image)

De acuerdo con el esquema que proponen Sirvent y Rigal (2012, p. 39), el proceso de la IAP se organizó en cuatro momentos a saber:

1. Diseño y planificación: en este momento se identificó la problemática a abordar, se definió el grupo de estudiantes, docentes y padre de familia que participarían del proceso investigativo. Así mismo, se diseñó el proyecto de aula como instrumento para la integración de la práctica sociocultural del cultivo de arroz a los procesos de enseñanza y aprendizaje que se tejen en torno a la medida y los procesos que en ella se inscriben.

Durante este primer momento se tuvo en cuenta que en la escuela había poca interacción con el contexto, los niños en los pruebas presentaban resultados desfavorables y las familias estaban poco involucradas con el proceso de enseñanza y aprendizaje de sus hijos.
2. Implementación de la IAP: para la implementación del trabajo de campo se seleccionaron algunas técnicas e instrumentos (que se describen más adelante), con el propósito de recopilar la información para posteriormente seleccionarla y analizarla de manera que permitieran dar respuesta a la pregunta de investigación. Un aspecto importante de este momento fue el poder involucrar al padre de familia, a la docente y a los estudiantes de grado tercero en las actividades del proyecto de aula, con lo cual, se posibilitó un mejor desarrollo de la propuesta en cuanto se vio favorecida la reflexión frente a la importancia de relacionar las prácticas socioculturales de la comunidad con las prácticas escolares.

Durante la implementación, el padre de familia reconoció que la práctica del cultivo de arroz, así como otras, carga consigo un conocimiento importante que puede ser aprovechado en la escuela. De igual manera la docente identificó las fortalezas del trabajo a partir de los proyectos de aula, y la oportunidad que le brinda incluirlos dentro de su quehacer como docente.

3. Elaboración de los resultados: este momento se centró en la organización de la información recolectada, estructurada por medio de categorías, las cuales surgieron a partir de las unidades de análisis que se identificaron (esta información, se complementa en el siguiente apartado). En cuanto al análisis de los resultados se hizo necesaria la confrontación de la teoría con la experiencia vivida en torno a la práctica sociocultural del cultivo de arroz y los procesos de medición que en ella se inscribieron; a su vez, los aportes de los teóricos, en relación con cada uno de los episodios de las diferentes unidades de análisis permitieron desde la triangulación, según los planteamientos de Hernández, Fernández y Baptista (2014).

A partir de la elaboración de resultados se identificó que implícita en la práctica sociocultural del cultivo de arroz hay presentes procesos como percibir, comparar y estimar, los cuales desde la observación, el ensayo -error y la práctica se inscriben en la cotidianidad de las diferentes actividades que tienen lugar dentro de la siembra de arroz.

4. Validación: durante la elaboración y análisis de resultados se tuvo presente en todo momento el objetivo y pregunta de profundización, para que a partir de los hallazgos encontrados durante la aplicación del proyecto de aula se pudiera dar validez al cruce de la teoría
con la información recopilada a lo largo del trabajo de campo. Estos hallazgos se materializan en la creación de conclusiones en aras de dar respuesta a la pregunta y objetivos planteados en esta propuesta.

3.4. **Técnicas e Instrumentos para la Recolección de Información**

Se abordaron diferentes técnicas e instrumentos en la ejecución del proyecto de profundización, a partir de los planteamientos de Sandoval (2002), quien expresa que las técnicas son los medios más adecuados para la generación y recolección de información, y que para los trabajos de corte cualitativo difieren unos de otros de acuerdo con las situaciones o circunstancias particulares de cada propuesta. De igual manera, Hernández, Fernández y Baptista (2014), conciben los instrumentos como las “formas para registrar los datos que se van refinando conforme avanza la investigación” (p. 12)

En este sentido, la información fue recolectada a través de dos técnicas: la observación participante y las entrevistas semi-estructuradas; como instrumentos se emplearon el diario de campo, los registros fotográficos y de audio, y el proyecto de aula que para el caso de este trabajo se desarrolló como un instrumento que no solo permitió la recolección de información, sino que también facilitó la integración de las técnicas e instrumentos, posibilitando el cumplimiento del objetivo general e integrado a toda la comunidad educativa.

3.4.1. La observación participante.

Esta técnica es uno de los elementos que caracterizan la IAP, ya que permiten que el investigador sea un sujeto activo en el proceso, favoreciendo la recolección de la información a partir de la interacción de todos los participantes. Para el caso de este trabajo, la observación participante fue la ruta más adecuada para conocer patrones culturales como propone Sandoval (2002), en esta ocasión, se busca conocer sobre la práctica sociocultural del cultivo de arroz y los procesos de medición que dentro de esta haya lugar.
La observación estuvo a cargo principalmente de la docente investigadora, Luz Obdulia Mosquera Quinto, quien acompaña el establecimiento educativo Santiago de Urabá y por ende la sede Mantagorda. Por parte del docente investigador Medardo Villacob Gallego, dicha observación tuvo lugar durante las tres visitas in situ, que se llevaron a cabo en el establecimiento y en las cuales se desarrollaron reuniones con padres de familia y docentes, además del desarrollo de algunas actividades enmarcadas en el proyecto de aula.

La importancia de esta técnica radicó en que para los docentes investigadores fue relevante alcanzar lo expresado por Sandoval (2002):

[…] Genéricamente se denomina "ganar la entrada al escenario" u "obtener el acceso". El éxito en lograr este cometido depende en buena parte de las habilidades interpersonales del investigador, así como de su creatividad y sentido común, para tomar las decisiones que sean más apropiadas y oportunas, de acuerdo con las especificidades de la situación que encuentre. (p. 141)

Para el caso del trabajo de profundización la observación participante permitió un acercamiento más directo con la comunidad educativa del establecimiento educativo. Tanto, padres de familia, estudiantes y docentes desde el diálogo y las interacciones se vincularon activamente al proceso en buena parte por respeto brindado por los investigadores hacia sus conocimientos alrededor de la práctica sociocultural del cultivo de arroz.

3.4.2. Diario de campo.

Es un instrumento no estructurado que se considera fundamental para el registro de la información diaria de las diferentes actividades y acciones desarrolladas durante el momento de aplicación del trabajo. Dentro de la propuesta de trabajo sirvió de complemento a las acciones que desde la observación participante tenían lugar. Sandoval (2002) por su parte se refiere a él como “[…] un registro continuo y acumulativo de todo lo acontecido durante la vida del proyecto de investigación” (p. 140).
El diario de campo, para el caso de este proyecto de profundización, fue elaborado por la docente investigadora, allí se describieron y narraron los acontecimientos o fenómenos observados durante el trabajo de campo. Teniendo como criterios la relación que dichos acontecimientos pudiesen guardar con los procesos de medición y la medida en general; este registro se elaboró posterior al desarrollo de las actividades planteadas en el proyecto de aula.

Figura 8. Diario de Campo. 9 de marzo de 2018

3.4.3. Entrevistas.

Es una técnica que busca entablar una conversación entre los actores del proceso investigativo; para este caso, los diálogos se entablaron entre estudiantes, los docentes investigadores y padre de familia en el marco del proyecto de aula aplicado. Las entrevistas que tuvieron lugar en el desarrollo de las actividades apuntaron a conocer más sobre la práctica sociocultural del arroz, permitiendo identificar allí elementos relacionados con los procesos de medición presentes. Las entrevistas fueron del tipo semiestructurado porque se contaba con unas preguntas iniciales, pero a partir del diálogo con los participantes surgieron otras relacionadas con la temática y que cobraban relevancia en contexto.
Se planteó la elaboración de tres entrevistas según la intención que se requería y el sujeto de estudio al cual se le aplicaría. La primera de ellas fue diseñada por los estudiantes a partir de los interrogantes que les surgían en torno al proceso de cultivo de arroz, dirigida al padre de familia agricultor, de allí surgieron diferentes preguntas con las cuales los estudiantes se acercaron a la tradición de transmisión oral bajo la cual los padres enseñan a sus hijos dicha práctica. La segunda entrevista elaborada por los investigadores se aplicó a la docente de grado tercero, con el fin de conocer un poco sobre su práctica en torno a la enseñanza de la medida, y última, con el propósito de evaluar el trabajo del proyecto de aula con los estudiantes.

3.4.4. Proyecto de Aula.

El proyecto de aula dentro del trabajo desarrollado, se empleó como un instrumento que permitió servir de acción intencionada que posibilitara entrelazar el contexto circundante con el contexto escolar, de acuerdo con González (2001). En este sentido, puede afirmarse que el proyecto de aula contribuyó a generar participación tanto de estudiantes, docentes y padres de familia, quienes desde sus conocimientos o experiencias en entornos ajenos al aula de clase, realizaron aportes a la construcción de saberes y adquisición de competencias en procesos de medición.

En este sentido, González (2001) plantea que el concepto de aula se debe resignificar, y convertirse en aquel lugar donde habita el conocimiento y en el que se pueden establecer lazos de comunicación en torno a él. Por lo tanto, se privilegió el hecho de trasladar el aula clases al campo, donde al aire libre, en el contexto de la siembra de arroz, se desarrollaron conocimientos asociados a los procesos de medición.

El proyecto de aula (ver anexo 1) se estructuró a manera de guía para el docente y para los estudiantes, con quienes se buscaba un trabajo más desde la práctica, por lo que las actividades se centraron en el diálogo desde entrevistas, el registro por medio de dibujos o respuestas a algunas preguntas y en la participación del proceso de la siembra de arroz con colaboración de un padre de familia y la docente del grado tercero. El proyecto se formuló de
acuerdo con los tres momentos que plantea González (2001): contextualización, metodología y evaluación. Al respecto, afirma que:

En la contextualización, el primer momento, se estipula el problema, el objeto, el objetivo y los conocimientos. En lo metodológico se relaciona el método, el grupo y los medios. En lo evaluativo se certifica el logro del objetivo mediante la solución del problema que dirige el diseño de los proyectos y se indican los resultados. González (2001, p. 3)

Teniendo en cuenta que estos tres momentos no son rígidos, a medida que se avanzaba en el proceso se modificaron o surgieron otras actividades que no se habían planteado inicialmente, pero que fueron significativas en el proceso. Dentro del proyecto de profundización los diferentes momentos se evidenciaron así:

- **Contextualización:** Esta es la parte preliminar del proyecto, para lo cual se propuso resumir brevemente la práctica del cultivo de arroz por parte de la comunidad de la vereda Mantagorda, luego se identificó el problema en torno a la construcción de procesos de medición por el cual surgió el proyecto de aula y se planteó como objetivo general del proyecto de aula, reconocer procesos de medición relativos a la longitud, masa y duración de eventos, presentes en la práctica sociocultural del cultivo de arroz. A su vez, se plantearon los conocimientos involucrados en el desarrollo del proyecto que giraban en torno a los procesos de medición, el concepto de magnitud y las unidades de medida.

 Las diferentes actividades que hicieron parte de la metodología del proyecto de aula guardan relación con el Derecho Básico de Aprendizaje N° 5 de grado tercero planteado por el MEN (2016), el cual indica que “el estudiante de este grado debe realizar estimaciones y mediciones de volumen, capacidad, longitud, área, peso de objetos o la duración de eventos como parte del proceso para resolver diferentes problemas”. (p. 25)

- **Metodología:** Para este momento se planearon seis actividades inicialmente, ya durante el desarrollo del proyecto se vio la necesidad de integrar otras. Cada actividad se propuso a partir de una pregunta orientadora, a la cual los estudiantes debían dar respuesta al final de cada sesión.
Cabe resaltar que las actividades no guardaban un orden lógico ya que estas se adecuaron a los tiempos de la siembra del arroz, los que dependen de las condiciones climáticas. En la Tabla 1 se enuncian las diferentes actividades:

Tabla 1. Esquema de las actividades planteadas para el proyecto de aula.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Pregunta orientadora</th>
<th>Propósito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconociendo mi vereda</td>
<td>¿Cómo es el lugar donde vivo?</td>
<td>Identificar lugares y personas cercanos a la siembra del arroz.</td>
</tr>
<tr>
<td>Reconocimiento de atributos medibles en los objetos</td>
<td>¿Qué cambios se producen en todo el proceso del cultivo del arroz?</td>
<td>Identificar las propiedades medibles en un objeto.</td>
</tr>
<tr>
<td>Percepción y estimación</td>
<td>¿Qué propiedades se pueden medir en los objetos?</td>
<td>Expresar de manera cualitativa las propiedades de un objeto.</td>
</tr>
<tr>
<td>Comparación</td>
<td>¿Quién tiene mayor masa?</td>
<td>Comparar cualitativamente la masa de un objeto.</td>
</tr>
<tr>
<td>Estimación y comparación (tiempo)</td>
<td>¿Cómo puedo medir la duración de un evento?</td>
<td>Relacionar el cambio en las características físicas de los objetos con el cambio del tiempo.</td>
</tr>
<tr>
<td>Comparación</td>
<td>¿Cómo son las espigas de arroz?</td>
<td>Identificar elementos en los cuales se evidencie la conservación de la longitud y la masa.</td>
</tr>
<tr>
<td>Salida pedagógica (entrevista al agricultor)</td>
<td>¿Qué diferencia hay entre el puño de arroz de don Luis y el de don Juan?</td>
<td>Identificar características medibles en objetos o elementos presentes en el proceso del cultivo del arroz relativas a longitud, masa y duración de eventos.</td>
</tr>
<tr>
<td>Salida pedagógica (siembra de arroz)</td>
<td>¿Cómo se siembra el arroz?</td>
<td>Identificar los procesos e instrumentos esenciales en la siembra del arroz.</td>
</tr>
<tr>
<td>Preguntando, preguntando, el arroz voy cosechando</td>
<td>¿Qué debo tener en cuenta a la hora de sembrar arroz?</td>
<td>Identificar los procesos e instrumentos esenciales en la siembra del arroz.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Las actividades realizadas estuvieron referidas principalmente a la construcción del concepto de medida, unidad de medida y procesos de medición en torno a la magnitud longitud. Estas se llevaron a cabo durante las semanas de acompañamiento en que la docente investigadora hacía presencia en el establecimiento educativo, ajustándose a los tiempos de siembra del cultivo de arroz, lo cual dificultó el hecho de que no todas las actividades se pudieron desarrollar.

Evaluación: A medida que se desarrollaban las actividades se implementó la técnica SQA12 para hacer énfasis en lo aprendido por los estudiantes. Además, se diseñó una rúbrica en la cual se enuncian nueve aprendizajes, que tanto docentes como estudiantes pueden desarrollar; además se realizó una reunión con la docente y los estudiantes al final del proceso para valorar consecución de objetivos, dinámicas de aprendizaje y aspectos relacionales.

Por último, el proyecto de aula como instrumento, permitió recopilar información valiosa en torno a cómo se vive la práctica sociocultural del cultivo de arroz en la comunidad de la vereda Mantagorda.

3.4.5. Fotografías y audios.

Estos instrumentos empleados para la recolección de información se incorporaron a medida que se desarrollaban las diferentes actividades. Para la recopilación de las fotografías y de los audios, se contó con la colaboración de la docente de grado tercero, registros todos alusivos a la implementación de las actividades del proyecto de aula.

3.5. Análisis de Resultados

Con el propósito de dar respuesta a la pregunta de profundización, dar cumplimiento de los objetivos del proyecto, y teniendo en cuenta el enfoque cualitativo de la investigación, se definió el estudio intrínseco de casos como estrategia para la elección de los estudiantes. Stake (1999), establece que:

12 Letras de la sigla SQA hacen referencia a tres enunciados: lo que sé, lo que quiero saber, y lo que aprendí.
[..] Ocurre cuando sentimos curiosidad por determinados procedimientos, o cuando asumimos la responsabilidad de evaluar un programa. El caso viene dado. No nos interesa porque con su estudio aprendamos sobre otros casos o sobre algún problema en general, sino porque necesitamos aprender sobre ese caso particular. Tenemos un interés intrínseco en el caso. (p. 16)

Dado que el trabajo se realizó con diez estudiantes de grado tercero se pensó en una estrategia que favoreciera la identificación de los procesos de medición presentes en la práctica sociocultural del cultivo de arroz, y desde los planteamientos de Stake (1999) sobre el estudio intrínseco de casos, se identificó un criterio de selección importante para el desarrollo del trabajo, es por eso, que se seleccionaron a aquellos estudiantes que evidenciaron mayor conocimiento referente a la siembra del arroz, ya sea porque han participado en la práctica o debido a las experiencias de los niños. Teniendo en cuenta este criterio de selección, que cobró sentido durante la actividad inicial planteada en el proyecto de aula, se seleccionaron los estudiantes Deiner, Julian Camilo y Anibal.

A partir de la identificación de estos tres estudiantes se buscó registrar información relevante, que desde sus prácticas y vivencias permitiera reconocer elementos en torno a procesos de medición presentes en proceso del cultivo de arroz.

Por otra parte, el proyecto de aula enmarcó los otros instrumentos y técnicas que mediaron la recolección de la información, que posteriormente dieron lugar al análisis. Debido a la cantidad de información recopilada, se seleccionó la de mayor importancia en relación con el objeto de estudio y la pregunta de profundización.

La estrategia implementada para el análisis de la información fue la triangulación, “entendida como la utilización de diferentes fuentes y métodos de recolección de datos relacionados con el objeto de estudio” Hernández, Fernández y Baptista (2014, p. 418). Dicha triangulación permitió validar los datos obtenidos de las diferentes fuentes, con las teorías que sirvieron de base para la propuesta y las interpretaciones de los docentes investigadores. En la siguiente figura se observan estos tres elementos:

Es a partir de la triangulación que se pretendió generar conocimiento alrededor de la pregunta de investigación, con el fin de alcanzar el objetivo general de analizar la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, en los estudiantes de tercer grado. Para ejecutar el proceso de triangulación de manera efectiva, se elaboró una tabla que permitiera ordenar y clasificar la información. A continuación, en la Figura 10, se presenta su esquema.
Posterior a la recolección de los datos, y con el diligenciamiento de la tabla que corresponde a la Figura 10, se posibilitó la identificación de las unidades de análisis que agrupadas se convirtieron en las categorías emergentes del análisis de la información. Según Hernández, Fernández y Baptista (2014), “las categorías son conceptos, experiencias, ideas, hechos relevantes y con significado” (p. 429). Por su parte, las unidades de análisis son segmentos de contenido textual, auditivo o visual que emergen de los datos y que se analizan para dar lugar a las categorías.

En este sentido, frente al análisis de datos cualitativos Hernández, Fernández y Baptista (2014) plantean ocho propósitos centrales los cuales se retoman como punto de partida para la revisión de la información que en este trabajo tiene lugar:

| FECHA | DATO | DESCRIPCIÓN | REFERENCIA BIBLIOGRÁFICA (PÁG. Y AUTOR) | TRIANGULACIÓN |
|---------|---|---|--|
| 07/05/2018 | **Actividad inicial: ¿cómo es el lugar donde vivo?**
En el desarrollo de esta actividad surge el conversatorio donde algunos niños expresan que ellos han participado en el proceso de sembrar arroz, situación que se aprovecha para identificar a los estudiantes que tienen conocimientos de este proceso. | Denier cuenta cómo se hacen los huecos cuando se está sembrando arroz y expresa que estos se hacen utilizando un palo llamado espeque que tiene una punta redonda. Deiner: Mide 10 centímetros de luz: ¿Cuántos son 10 centímetros? Deiner toma su lápiz y muestra lo que para el son 10 centímetros como lo muestra la imagen. | *Por su parte* Godino, Batanero y Roa (2002, pág. 645)
 Estimar una cantidad es el proceso de obtener una medida sin ayuda de instrumentos, es decir consiste en realizar juicios subjetivos sobre la medida de los objetos. También podemos decir que es la *medida* realizada “a ojo” de una cualidad de un objeto. *Dentro del marco de este episodio la estimación le permite al sujeto hacer una valoración de la medida del objeto a partir de la experiencia vivida con relación a la situación planteada llegando a una aproximación de la medida real que en este caso no implica necesariamente “la medida al ojo.” | Ante la pregunta ¿cuánto mide la punta del espeque? Deiner utiliza su lápiz para representar la estimación de la medida diez centímetros de la punta de este instrumento no convencional utilizado para realizar los huecos al sembrar arroz. Por su parte Godino, Batanero y Roa (2002) expresan que estimar una cantidad es el proceso de obtener una medida sin ayuda de instrumentos, es decir consiste en realizar juicios subjetivos sobre la medida de los objetos. También podemos decir que es la “medida” realizada “a ojo” de una cualidad de un objeto. Dentro del marco de este episodio la estimación le permite al sujeto hacer una valoración de la medida del objeto a partir de la experiencia vivida con relación a la situación planteada llegando a una aproximación de la medida real que en este caso no implica necesariamente “la medida al ojo.” |

Figura 10. Esquema para la organización y análisis de la información. Fuente: Elaboración propia.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Explorar los datos</td>
</tr>
<tr>
<td>2</td>
<td>Imponerles una estructura (organizándolos en unidades y categorías),</td>
</tr>
<tr>
<td>3</td>
<td>Describir las experiencias de los participantes según su óptica, lenguaje y expresiones</td>
</tr>
<tr>
<td>4</td>
<td>Descubrir los conceptos, categorías, temas y patrones presentes en los datos, así como sus vínculos, a fin de otorgarles sentido, interpretarlos y explicarlos en función del planteamiento del problema</td>
</tr>
<tr>
<td>5</td>
<td>Comprender en profundidad el contexto que rodea a los datos</td>
</tr>
<tr>
<td>6</td>
<td>Reconstruir hechos e historias</td>
</tr>
<tr>
<td>7</td>
<td>Vincular los resultados con el conocimiento disponible y</td>
</tr>
<tr>
<td>8</td>
<td>Generar una teoría fundamentada en los datos.</td>
</tr>
</tbody>
</table>
4. ANÁLISIS DE LA INFORMACIÓN

Para analizar la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá sede Mantagorda, se reconocieron unas unidades de análisis que posteriormente posibilitaron la construcción de dos categorías emergentes. La primera, se centra en los saberes y prácticas presentes el cultivo de arroz en torno a los procesos de medición, y la segunda muestra las relaciones, tensiones y desafíos entre la práctica escolar y la práctica sociocultural del cultivo de arroz. Esta organización se muestra desde el siguiente esquema.
4.1. Saberes y prácticas de procesos de medición en el cultivo de arroz

4.1.1. Procesos de medición (percepción, comparación y estimación).

El MEN (1998) propone que los aprendizajes referidos a los sistemas métricos deberán ir encaminados a permitir que los estudiantes desarrollen procesos y conceptos tales como: construcción de los conceptos de cada magnitud, comprensión, conservación, estimación, apreciación del rango de cada magnitud, la selección de unidades de medida, la diferencia entre la unidad y el patrón de medición, la asignación numérica y el trasfondo social de la medición.

Teniendo presente lo anterior y la aplicación de la estrategia, en esta categoría se hará énfasis en la percepción, comparación y estimación porque en las diferentes actividades que se desarrollaron estuvieron presentes estos tres procesos que se describen por separados en este trabajo pero se reconoce que existe una relación de dependencia entre ellos.

4.1.1.1. Percepción

Godino, Batanero y Roa (2002) expresan que la medición comienza con la percepción de lo que debe ser medido y, por lo tanto, la enseñanza de la medición debe apoyarse en las ideas intuitivas de los estudiantes y de sus ideas informales de medición para ayudarles a comprender los atributos que se miden y lo que significa medir.

Teniendo en cuenta lo anterior, en la actividad inicial los estudiantes realizaron el mapa de la vereda Mantagorda dibujando el lugar de su vivienda y los cultivos de arroz que observan en el recorrido que realizan a diario para ir a la escuela, tomando ésta como punto de referencia.

Al terminar el dibujo Julián Camilo expresó: “no puedo dibujar mi casa porque el espacio es muy pequeño y mi casa no cabe allí porque no es tan cerca de la María Alejandra” (Actividad inicial 8 de mayo, 2018). En este episodio se observa que el estudiante percibe la distancia entre su casa y la de su compañera por la impresión visual que tiene de los recorridos que hace a diario. El sentido de la vista es fundamental en el desarrollo de la percepción siendo este un proceso permanente en las actividades de la siembra del arroz, por ejemplo al realizar los huecos para sembrar la semilla los estudiantes utilizan la vista para observar que la distancia entre los huecos sea la adecuada, previendo el crecimiento de las plantas a futuro como se ilustra en las siguientes imágenes.

Figura 14. Salida de campo, siembra de arroz 9 de mayo, 2018
Desde este punto de vista, en este trabajo se aborda la percepción como la capacidad que posee el ser humano para determinar por medio de los sentidos las cualidades que pueden ser medidas en un objeto.

Para los cultivadores de arroz de esta comunidad, la vista y el tacto son indispensables a la hora de ejecutar labores como la siembra y recogida del arroz, por ejemplo, Wilfrido cuenta en la entrevista que “(...) para que el arroz caiga en el hueco uno debe mirar bien y tener esa curiosidad, o sea el que está sembrando tener ese tino o esa puntería para que caiga dentro del huequito” (Wilfrido, entrevista 16, Mayo, 2018)

Lo expresado por Wilfrido ratifica la postura de Godino, Batanero y Roa (2002) cuando expresan que la percepción es el camino inicial para la construcción del concepto de medida y que es a través de los sentidos que se consolida este proceso.

La práctica sociocultural del cultivo de arroz enmarca diferentes acciones en las que la percepción tiene lugar. Por ejemplo, cuando se toma un puño de arroz se percibe la masa de las espigas de arroz, de igual manera el color de las espigas le sirve a los cultivadores para percibir el tiempo maduración o secado del arroz. Se puede observar, cómo en estas acciones, la intuición Godino, Batanero y Roa (2002), se hace presente constantemente, razón para que en la escuela se puedan aprovechar y de esta manera, desde la percepción los estudiantes puedan identificar y reconocer los diferentes atributos medibles en los objetos.

4.1.1.2. Comparación

En la actividad con las espigas, Deiner hace uso de comparación para indicar cuánto son dos centímetros que corresponde a la medida de la semilla de arroz.
Con relación al uso de la comparación como proceso de medición, Chamorro (2005) hace referencia a los estudios Piagetanos, en lo que respecta a la construcción de una determinada magnitud, que indican la evolución del niño en dicha construcción resultará de la maduración y de las experiencias vividas. Piaget (1977), citado por Chamorro (2005), define la siguiente evolución que se da en construcción de los procesos de medición: comparación perceptiva directa, compara de forma perceptiva, visual, táctil, desplazamiento de objetos, operatividad de la propiedad transitiva.

En relación con los planteamientos anteriores, en la construcción de la noción de medida, un estudiante realiza una comparación indirecta haciendo un racionamiento a través de un objeto intermediario, dejando de lado su propio cuerpo, ubicándose así en la operatividad de la propiedad transitiva. Este proceso le permitió percibir la longitud de la semilla de arroz y de modo natural lo comparó con otro objeto que tiene la misma propiedad, este proceso conduce a la necesidad de un estándar que se pueda ser aplicado sucesivamente, es decir, la construcción de sistemas de referencia para que los estudiantes puedan reconocer los atributos de los objetos y puedan relacionarlos con otros que sirva de referente en el proceso de comparación.
Por ejemplo, en el siguiente episodio se observa como Aníbal utilizando un instrumento con propiedades similares a la longitud de la espiga los compara para luego efectuar la medición.

Figura 16. Actividad N°3, 9 de mayo, 2018

4.1.1.3. Estimación

Segovia, Castro y Rico (1989), definen la estimación como un “juicio de valor del resultado de una operación numérica o de la medida de una cantidad en función de las circunstancias individuales de lo quien lo emite” (p.18). La estimación en la práctica sociocultural del cultivo de arroz es un proceso que enmarca toda la labor. En el desarrollo de la actividad inicial el estudiante Deiner cuenta cómo se hacen los huecos donde se deposita la semilla expresando que estos se hacen utilizando el espeque y lo describe como “un palo que tiene una punta”; ante la pregunta ¿cuánto mide la punta del espeque? Deiner utiliza su lápiz para representar diez centímetros (la medida de la punta de este instrumento no convencional). En el fragmento se evidencia la respuesta del estudiante:

Deiner: Con la punta del espeque se hacen los huecos donde cae la semilla

Profesora: ¿Cuánto mide la punta del espeque?

Deiner: La punta del espeque mide más o menos diez centímetros
El estudiante indicó con su lápiz cuánto son diez centímetros como lo muestra la siguiente figura:

Figura 17. Actividad inicial 8 de mayo, 2018 (Deiner grado tercero)

Por su parte, Godino, Batanero y Roa (2002) expresan que estimar una cantidad es el proceso de obtener una medida sin ayuda de instrumentos, es decir, consiste en realizar juicios subjetivos sobre la medida de los objetos, también se puede decir que es la “medida” realizada “a ojo” de una cualidad de un objeto. Con respecto al episodio anterior, Se observó cómo Deiner hace la estimación de la punta del espeque sin ayuda de un instrumento de medición, haciendo una valoración de la medida valiéndose de lo cotidiano, de las experiencias vividas en el proceso del cultivo de arroz. De igual manera, en el desarrollo de la actividad número tres los estudiantes estimaron la medida de una semilla y una espiga de arroz sin tenerla presente.

En el siguiente episodio Deiner estima que la medida de la espiga de arroz es trece centímetros y a la pregunta ¿cuántos son 13 centímetros? Señala con la mano cuántos son trece centímetros como lo muestra la imagen.
Bright (1976), citado en MEN (1998), define la estimación de magnitudes como “el proceso de llegar a una medida sin la ayuda de instrumentos de medición. Es un proceso mental, aunque frecuentemente hay procesos visuales y manipulativos en él” (p.66), en esta definición de estimación de una medida se observa que se realiza la valoración sin instrumentos de medida y tomando como referentes aspectos perceptivos. En este episodio Deiner se vale de su experiencia y contacto que ha tenido con el objeto fuera de la escuela para hacer la estimación de la medida de la espiga.

Después de realizar la estimación de la espiga con el objeto ausente, se le presentó la espiga al estudiante Deiner y a la pregunta, ¿cuánto mide la espiga de arroz que tienes en la mano? la observa y expresa: “mide un poquito más de trece centímetros, porque yo no la había visto y por el palito tan largo que tiene mide más de lo que yo le había dicho” (Actividad N°3, 9, mayo 2018)

Chamorro (2003), una de las primeras etapas de la progresión en la enseñanza de las magnitudes es la estimación sensorial donde los sentidos deben proporcionarnos la información
pertinente para decantar el atributo medible del resto de los que concurren en el mismo objeto. Se trata de aislar el atributo que define la magnitud.

En los procesos de estimación con el objeto ausente y presente, la observación directa juega un papel importante a la hora de confirmar la valoración que se hace de una medida en ausencia del objeto, en este caso la vista y el tacto le permitieron al estudiante Deiner verificar la estimación de la espiga de arroz utilizando la vista y el tacto con lo cual pudo hacer el reconocimiento de atributos como el largo de la espiga para realizar la estimación más acertada del objeto como lo muestra la siguiente imagen.

![Imagen de Deiner y Julián Camilo realizando una actividad]

Figura 19. Actividad N°3, 9 de mayo, 2018 (Deiner)

Por su parte, el estudiante Julián Camilo en la actividad N° 3,

![Imagen de Julián Camilo escribiendo sobre la medida de semillas y espigas de arroz]

Figura 20. Actividad N°3, 9 de mayo, 2018 (Julián Camilo)
La medida de una magnitud, según Chamorro y Belmonte (1988), es una actividad que requiere una gran experiencia en la práctica de estimaciones, clasificaciones y seriaciones; en las respuestas de Julián Camilo se evidencia la utilización de unidades de medida de longitud convencionales, es consciente del reconocimiento de los atributos como el largo de la espiga y de la semilla y expresa la valoración de estas utilizando unidades de medida de longitud; cabe resaltar que este proceso fue realizado con los objetos ausentes.

Con la respuesta de Julián camilo, Deiner intervino:

Julián Camilo: Una espiga de arroz mide dos metros

Deiner: No puede medir dos metros porque la espiga de arroz es más pequeña y dos metros es como así (abre los brazos y muestra a Julián Camilo lo que para él son dos metros)

Figura 21. Actividad N°3, 9 de mayo, 2018 (Deiner)

En consecuencia, Bishop (1999) citado en Vergara (2014) plantea que antes de que se desarrolle un proceso de medición existe una necesidad cultural evidente de que el lenguaje sea capaz de expresar cualidades mediante algún método comparativo y ordenado como Deiner hace con Julián Camilo.
En la actividad N° 5 a través de una salida pedagógica y con la ayuda de Don Wilfrido los estudiantes participaron de la siembra de arroz.

![Image]

Figura 22. Actividad N°5. Siembra de arroz, 9 de mayo, 2018 (grado tercero)

La imagen muestra cómo el estudiante Aníbal estima la distancia entre dos huecos y utiliza como unidad de medida sus pies como referencia, según Pizarro y Albarracín (2015) citando a Hildret (1983), el proceso de estimación es una acción compleja que involucra diferentes habilidades, como el manejo del concepto de unidad, la imagen mental de la unidad, la comparación, la iteración de la unidad y la utilización de estrategias para estimar.

En este sentido, Aníbal utiliza como unidad de medida los pies para estimar y comparar la distancia que hay entre los huecos teniendo en cuenta la unidad de medida empleada. Estas actividades de comparar, medir, estimar y explicar presentes en la práctica sociocultural del cultivo de arroz el lenguaje verbal y no verbal, son importantes porque en un nivel de explicación elemental: los nombres, adjetivos, preposiciones, verbos y adverbios, así como las frases que se conforman se enlazan para hacer comprender la realidad; en conclusión, el lenguaje nos permite manifestar las diferencias o semejanzas que encontramos en la observación de la
realidad y la diversidad lingüística nos permite una diversidad de clasificaciones evidentes en el conocimiento cultural de Wilfrido y Deiner.

4.1.2. Unidades de Medida propias.

Existen diversos trabajos (Harris, 1980, Gay y Cole, 1967, Zaslavsky, 1973; citados en Bishop, 2001; Gerdes, 1985) que muestran las destrezas entre grupos étnicos para medir y estimar cantidades o para la utilización de medidas antropométricas, donde la importancia dada a una magnitud es completamente relativa a la perspectiva cultural, así como el manejo que se le da a las distintas unidades de medida, de modo que la precisión y exactitud en la medición de una magnitud se realiza por una necesidad social y ambiental de cada grupo cultural.

Dentro de la práctica sociocultural del cultivo de arroz, se observó cómo los padres de familia y los estudiantes hacen uso, con gran facilidad, de unidades de medida no convencionales, principalmente aquellas que surgen de las partes del cuerpo como la cuarta, el jeme13, el pie o paso, la manotada y la brazada. Estas unidades de medida, que se utilizan para medir la longitud, son unidades antropométricas, dado que se usa el cuerpo como una referencia directa para las mediciones.

En esta práctica, este tipo de unidades juegan un papel importante en las diversas labores que se realizan, y por las características de las mismas varían de acuerdo a cada situación. Aquí la precisión no es un factor determinante a la hora de medir.

En la entrevista al padre de familia, que hizo parte de la Actividad Nº 4.

Deiner: ¿cuántas manotadas conforman un puño de arroz14? (ver Figura 22) y Wilfrido - “Depende del gusto del dueño si lo quiere echar de tres, cuatro o de cinco eso depende del gusto de la persona” (Wilfrido, comunicación personal, 16 de mayo de 2018)

13 La cuarta y el jeme aunque son unidades de medida que tienen como referencia la mano, difieren en la postura de los dedos. La primera es la distancia que hay desde el dedo meñique hasta el pulgar, y el jeme es la distancia que hay entre el pulgar y el dedo índice.

14 Son varias manotadas de espigas de arroz, que por lo general van de tres a cinco
En la respuesta de Wilfrido se observa el uso de la palabra gusto, hace alusión al tamaño que puede tener el puño de arroz de acuerdo a la persona que lo organiza, ya que este está relacionado con el tamaño de su mano, que determina una manotada mayor o menor.

En este caso, tanto la manotada y como el puño de arroz, se convierten en unidades no convencionales de acuerdo con los planteamientos de Posada et al. (2006), que expresa que las unidades de medida se pueden tomar como no convencionales cuando son aceptadas y reconocidas por un grupo social o comunidad.

En la siguiente figura, producto de la actividad N° 3 donde los estudiantes estimaron la medida de una semilla y de una espiga de arroz, primero sin observar los objetos y luego con ellos. En la segunda parte los estudiantes podían establecer la medida a partir de los elementos u objetos que consideran pertinentes. Se observa como Julián Camilo usa su mano (jeme) como unidad de medida para establecer la longitud de la espiga de arroz.
Figura 24. Actividad N° 2 - Julián Camilo haciendo uso de su jeme. Actividad N°3, 8 de mayo, 2018

En este caso, su jeme es una unidad de medida de uso común en diversas labores del campo en la comunidad por ejemplo: la estimación que hacen entre los huecos donde se deposita la semilla de arroz al sembrarse el arroz que generalmente es a tres cuartas pero que también utilizan el jeme para establecer la distancia entre hueco y hueco.

La siguiente figura, se observa a Deiner comprobando la medida entre dos huecos en los que se siembra el arroz.

Figura 25. Deimer midiendo la Distancia entre dos huecos. Salida de campo, 9 de mayo, 2018
Cabe resaltar que el hombre desde épocas muy antiguas ha participado activa y directamente en la construcción de patrones de medidas utilizando las partes de su cuerpo, motivado la necesidad de medir, Kula (1998). El uso de estas medidas en la comunidad, al igual que desde épocas antiguas porque para ellos su cuerpo es el mejor instrumento.

Es precisamente a partir de esa practicidad y necesidad de medir, que para los estudiantes el uso de partes de su cuerpo en la realización de mediciones, es una acción frecuente en tanto está presente dentro de la práctica sociocultural del cultivo de arroz. Las medidas de longitud antropométricas según Chamorro y Belmonte (1988) poseen dificultades de precisión por la falta de homogeneidad del instrumento de medida, dificultades en las superposiciones, dificultades de comunicación y verificación, entre otras. Sin embargo, desde la perspectiva no occidental, son muchos los autores que evidencian las habilidades en la estimación y medición de cantidades desarrollada en las diferentes comunidades. Aquí se observa, cómo desde la práctica se hace uso de este tipo de unidades de medida dado que están al alcance de cada persona, y permiten solucionar los problemas de medida que se presentan o pueden presentar en sus prácticas socioculturales.

Al respecto Kula afirma que:

Los métodos de verter el grano en la medida permitían que cuanto mayor sea la potencia con la que el grano se vierta en el recipiente, mayor será la cantidad de cereal que quepa en la medida, porque los granos estarán más apretados. La potencia de la caída está en relación directa con la altura de la cual se vierte, por la acción de la gravedad (Kula, 1998, p.62)
El estudio de los diversos sistemas de medida que han utilizado los diversos pueblos a través de la historia muestran como las unidades de medida de longitudes aparecen como un principio totalmente ligado a las partes del cuerpo humano; después las comparaciones entre medidas serían con objetos del entorno circundante y todos estaban encaminados a garantizar la supervivencia y la trascendencia del grupo social. En el proceso de la siembra de arroz hemos visto como las partes del cuerpo son utilizadas como instrumentos de medición, en la figura anterior se muestra como haciendo uso de objetos del entorno en este caso una lata de sardina, es reutilizada en la comunidad de Mantagorda como unidad de medida en procesos de estimación y comparación de una libra de arroz.

4.1.3. Saber cultural (el conocimiento, la supervivencia y la trascendencia).

D’Ambrosio (1996, 2007, 2008) defiende que la especie humana recurre a los recuerdos de soluciones para eventos problemáticos de su historia cuando se enfrenta con situaciones problemáticas nuevas; es decir, que la sobrevivencia y la trascendencia constituyen la esencia del ser (verbo) humano; el ser (sustantivo) humano como especie humana lucha por la sobrevivencia y la planificación del proceso de sobrevivencia demarca la trascendencia del ser,
pues se reúne la experiencia de situaciones anteriores y se adapta a las nuevas circunstancias, con lo cual se incorpora a la memoria nuevos hechos y saberes. Aunque el conocimiento se genera individualmente, la alteridad promovida por la comunicación hace que ese conocimiento sea enriquecido por la información percibida por el otro.

Este asunto de la supervivencia y de la trascendencia se deja ver en la entrevista que hacen los estudiantes a señor Wilfrido cuando le preguntaron: ¿Usted comercializa el arroz que cultiva? Wilfrido respondió:

-No, ese arroz es únicamente para el consumo y para el que lo necesite. También lo intercambio uno por yuca u otro producto; porque mire, realmente usted cortó 400 puños de arroz, llenó su casa de arroz que va a coger qué porque en la trilladora compran lo va a vender, ellos lo compran a $1200, en cáscara va usted coger 100 o 200 puños y los va a vender. Eso le da a algunos, pero yo no, porque yo analizo que es un ahorro porque todo el esfuerzo que uno hace durante el tiempo que se está sacrificando, con tal de uno ir almacenando esos recursos para la comida, porque uno no sabe más adelante cómo va a estar y puede tener ese sustento y si uno vende el arroz la planta no va a estar allí, mientras que si tiene el arroz tiene el ahorro allí. (Entrevista, 16 de mayo de 2018)

En la explicación que da el señor Wilfrido se observa como la cosecha de arroz no genera rentabilidad, a la hora de comercializarlo, lo es considerado como una situación problemática del contexto, que desde la experiencia y el conocimiento adquirido se resuelve convirtiendo la cosecha en un ahorro que permitirá su sustento más adelante y el mantenerse vivo. Este conocimiento ha sido construido en la comunidad y responde a las dinámicas culturales que allí se tejen y que se transmiten de generación en generación.

White (1988) plantea que las matemáticas son una parte de la cultura pues aportan parte de la herencia de conocimiento de un pueblo para la sobrevivencia. Estos conocimientos heredados y la interacción de los conocimientos personales contribuyen a generar el conjunto de conocimientos compartidos y comportamientos compatibilizados que son subordinados a unos
parámetros que se establecen como ‘valores culturales’, a través de los cuales se conduce o guía la cultura de grupo.

De igual manera la transmisión del conocimiento se hizo evidente en la respuesta del señor Wilfrido a la pregunta: ¿Cómo aprendió a sembrar arroz? A la cual respondió: - “A Través de nuestros padres que son los que tienen esa ideología para enseñar a los hijos a cultivar la tierra” (Wilfrido, entrevista, 16 de mayo de 2018).

En este caso, esa ideología, es el conocimiento este permite que la cultura perdure y evolucione conforme a las nuevas problemáticas que surjan en el entorno. Por su parte, D’Ambrosio (2005b) se refiere a la cultura como el conocimiento creado por la interacción común, resultado de la comunicación social organizada en un sistema intelectualmente admitido de códigos, símbolos y significados, otorgados a un conjunto de creencias, valores, normas de comportamiento y formas de conocimientos, compartidos por las personas que viven en un momento y un espacio determinado.

Esas enseñanzas de los padres hacia los hijos, van cargadas de un sinnúmero de maneras de interpretar la realidad, que mediadas desde las acciones, formas de relacionarse, comunicarse, dar significado a las situaciones, configuran la cultura y el conocimiento. Lo anterior, en concordancia con los planteamientos de D’Ambrosio (2005b), quien afirma que “(…) estos procesos ocurren de manera diferente en las diversas culturas y se transforman a lo largo del tiempo. En ellos siempre se revelan las influencias del medio y se organizan con una lógica interna, se codifican y se formalizan (…)”(p.102).
En el diálogo con el señor Wilfrido se revelan muchas de las acciones como el conocimiento matemático nace de la cultura, como este es utilizado para resolver problemas de la vida diría y como o dentro de la práctica sociocultural de sembrar arroz son llevados a cabo de manera intuitiva diferentes procesos de medición,

Al respecto, se asumen los conocimientos matemáticos culturales como comportamientos heredados de manera oral o visual entre los miembros de un grupo cultural, como lo es la comunidad de Mantagorda, y estos contribuyen de manera significativa a la supervivencia presente y futura. En este sentido el saber cultural de Wilfrido permite acomodar las circunstancias que se le presentan a su propia manera de conocer por ejemplo cuando los el estudiante Aníbal le pregunta:

¿Cómo es que se siembra el arroz y los pájaros no se lo comen? Wilfrido responde:

El arroz se siembra a través del huequito que se hace, al mismo tiempo que se hace el huequito se tira la mata y se tapa, sí, hay el pájaro no tiene posibilidad de ver dónde está el grano para sacarlo, porque si en un huequito de esos hay diez o doce granitos, quedan tres o cuatro afuera con insecticida, llega él y se come los tres están por fuera
envenenados y ya no tiene posibilidad de sacar los otros. (Entrevista, 16 de mayo de 2018).

Aquí se observa, como desde las prácticas que se desarrollan en torno al cultivo de arroz hay todo un proceso que permite dar solución a los problemas de la vida diaria, buscando la supervivencia. Ese saber cultural de Wilfrido tuvo oportunidad de ser compartido y vivenciado en la salida de campo para cultivar arroz, donde él orienta a los estudiantes sobre la forma de cómo cultivar el arroz tal como se observa en la siguiente figura.

![Imagen de campo de arroz]

Figura 28. Salida de campo, 9 de mayo de 2018.

Oliveras (2000) quien plantea que la convivencia estimula la creatividad y las relaciones que surgen de esta, su vez generan comunicación y elaboración de abstracciones que forman parte del saber cultural. Oliveras establece que ese saber común en muchas culturas les ha permitido contar, medir, razonar, establecer situaciones, descripciones de los entornos físicos, con signo especiales, y otras explicaciones simbólicas, con expresiones abstractas generando un conocimiento llamado matemático.
Dentro de ese saber cultural existen conocimientos propios de cada cultura. Según D'Ambrosio (2005), citado Valverde y Espinoza (2012), las matemáticas no sólo se encuentran en los salones de clase y en los libros de texto, sino también en la vida cotidiana. “lo cotidiano está impregnado de saberes y haceres propios de la cultura” (p.71). Por ejemplo en este proceso de siembra de arroz juega un papel muy importante la época lluvia porque es este fenómeno climático el que indica los tiempos de cada proceso así lo explica Wilfrido a los estudiantes:

| Julián Camilo: ¿cuál es el tiempo para sembrar arroz? |
| Wilfrido: Este es el tiempo del abril o Mayo tiempo de lluvia, porque la tierra está húmeda |
| Deimer: ¿Cuánto demora el arroz para que para? |
| Wilfrido: hay tres variedades, uno de tres meses 90 días, hay otro de cuatro meses y el de agua que es de 5 meses y se tiene que recoger por ejemplo el de tres meses a los tres meses exactamente |

La comparación y estimación se hacen evidentes en diferentes momentos del cultivo y siembra de arroz ejemplo, a la pregunta ¿cómo crece el arroz? Wilfrido respondió:

El arroz crece de una forma casi como el ser humano, son casi dos cosas iguales porque uno siembra el arroz, por ejemplo hoy, la tierra está húmeda y a partir de mañana ya comienza a nacer ese capullito, que es el que va a subsistir. Como cuando uno se está formado en el vientre de la madre que cada segundo está creciendo y nadie se está dando cuenta de lo que está creciendo, así mismo es la planta del arroz. (Wilfrido, 16 de mayo, 2018 Actividad N°4)

Al respecto, D'Ambrosio (2007) distingue ocho tipos de prácticas para describir el saber hacer matemático que es contextualizado y responde a factores naturales y sociales que permiten encontrar explicaciones y definir estrategias para lidiar con el ambiente inmediato y remoto, dichas prácticas matemáticas son: comparar, clasificar, cuantificar, medir, explicar, generalizar, inferir y evaluar. El señor Wilfrido, en su narración, deja ver la comparación que hacen entre los atributos el hueco donde se deposita la semilla de arroz al sembrarse y el vientre de una mujer en estado de gestación en este episodio se ven reflejado el proceso de comparación. El proceso de comparación utilizada en esta práctica sociocultural del sembrado de arroz de la vereda
Mantagorda permite a los pobladores percibir la propiedad de los objetos de forma natural comparándolos con otro que tiene la misma propiedad, como lo es la situación mencionada por Wilfrido.

![Figura 29. Salida de campo, siembra de arroz 9 de mayo, 2018](image)

Por otra parte Bishop (1988, 1995, 1999) plantea seis Actividades Matemáticas Universales (AMU): contar, localizar, medir, diseñar, jugar, explicar. Utiliza la denotación de ‘universal’ para indicar que se trata de elementos presentes en todas las culturas humanas conocidas o documentadas, sin detrimento de que existan grupos culturales en donde no se realice alguna de ellas. Bishop (1988,) establece que las matemáticas son parecidas a un lenguaje y que se pueden entender como una ‘tecnología simbólica’, entendiendo la habilidad de los individuos para controlar su desarrollo simbólicamente. Dicha tecnología simbólica puede caracterizarse a partir de las AMU, adaptadas al contexto.

Estos planteamientos de Bishop se hacen visibles en el relato de Wilfrido cuando cuenta cómo calcula la distancia entre los huecos en la siembra del arroz. Tanto las prácticas matemáticas planteadas por D’Ambrosio como las actividades matemáticas de Bishop son importantes en este trabajo donde se reconoce que la matemática de lo cotidiano se identifica como la matemática aprendida en el entorno social y en el ambiente familiar, a través de juegos e
interacción social. Este estudio sobre los procesos de medición en la práctica sociocultural del cultivo de arroz trata de mostrar que lo cotidiano está impregnado de saberes y quehaceres propios de la cultura donde la matemática tiene presencia, puesto que durante las tareas cotidianas los individuos están comparando, clasificando, cuantificando, midiendo, explicando, generalizando, infiriendo y evaluando con los instrumentos materiales e intelectuales que son propios de su cultura.

4.2. Relaciones entre la práctica escolar y la práctica sociocultural del cultivo de arroz

En esta categoría se evidenciaron algunas tensiones, desafíos y aprendizajes en el contexto escolar para estudiar procesos de medición inmersos en la práctica del cultivo de arroz.

Las prácticas escolares, constituyen un conjunto de actos que se desarrollan en el interior de la escuela, de situaciones enmarcadas en el contexto institucional y que influyen directamente en los procesos de enseñanza y aprendizaje; se refiere a las interacciones entre profesoress y en el salón de clases, determinadas en gran medida, por las lógicas de gestión y organización de las instituciones educativas. De acuerdo con Miguel y Miorim (2004), la práctica social es:

Toda acción o conjunto intencional y organizado de acciones físico-afectivo-intelectuales, realizadas, en un tiempo y espacio determinados, por un conjunto de individuos, sobre el mundo material y/o humano, y/o institucional, y/o cultural, acciones éstas que, por ser siempre, y en cierta medida, y por un cierto período de tiempo, valorizadas por determinados segmentos sociales, adquieren una cierta estabilidad, y se realizan con cierta regularidad. (p. 27)

Al respecto, en el siguiente episodio, la docente Katy narró cómo es la práctica de escolar con el grado tercero, referida a los aprendizajes sobre la medida. Su respuesta a la pregunta: ¿Cómo enseñas la medida?, fue:
Bueno, el pensamiento métrico lo trabajo básicamente de acuerdo a lo que la cartilla de escuela nueva nos indica que realice en la clase y lo que nos indica pues cierta unidad que hagamos. De pronto quizás, la medida la trabajamos con materiales del medio, con palitos, con cabuyas con los recursos que ellos tienen a la mano para trabajar, para medir el tablero, medir la puerta, para medir el área del salón. (Katy Docente 3°, entrevista 18 de septiembre de 2018).

4.2.1. Tensiones

Se observó en la práctica escolar que la docente relató, un arraigo esquematizado hacia algunos de los lineamientos del programa Escuela Nueva, que se implanta como único posible en el hacer de los aprendizajes referidos a la medida e invisibilizan las potencialidades del entorno extra escolar que hace parte de la cultura de los estudiantes.

Esta situación no es ajena al entorno educativo, puesto que uno de los efectos de la sociedad globalizada que impacta de manera negativa los sistemas educativos, es que al interior de las instituciones educativas se sufren presiones por cumplir los avales nacionales e internacionales. Según D’Ambrosio (2005b), como resultado de esta globalización se genera una paulatina eliminación de los componentes culturales en la definición de los sistemas educativos y se activan mecanismos inconscientes de resistencia para preservar estos rasgos, tales como tradiciones, lengua y manifestaciones artísticas en general, los cuales valoran la diversidad como un estímulo a la creatividad, tal como se evidenció en este proyecto de profundización, el cual propendió por activar saberes culturales en torno al aprendizaje de la noción de medida.

Para profundizar un poco más en las características de la práctica escolar del grado tercero, la docente describe, a continuación, el tipo de actividades que realiza con los estudiantes:

| Luz: ¿Qué actividades le propones a los niños para medir? |
| Katy: Las actividades que realizamos para medir las hacemos no solamente en el aula de clases, si no que en muchas ocasiones salimos fuera, que midamos el restaurante, que midamos en la casa también, que lo complementemos con los padres de familia, de pronto medir en la casa la cama, la puerta de su habitación, el televisor, ese tipo de actividades. |
Luz: ¿Cómo seleccionas las actividades de las cartillas de escuela que se relacionan con la medición?

Katy: Bueno, hay unas actividades, por lo regular no se alcanzan a trabajar todas las que la cartilla de escuela nueva nos dice que trabajemos, pero si, trata uno de seleccionar lo que sea como más práctico, lo que resulte como más productivo para ellos, donde ellos tengan que quizás salir del salón, que involucre la parte práctica, para que el pensamiento sea más importante. (Entrevista, 18 de septiembre de 2018)

La docente en su relato contó que realizaba actividades que propiciaran salida del aula de clase por parte de los estudiantes, sin embargo, estas salidas no involucraban las prácticas socioculturales de la vereda Mantagorda, podría afirmarse que la intencionalidad de la docente es cambiar de espacio físico para desarrollar las actividades, distintas al aula de clase. Se dejó entrever, además, que la adquisición de conocimiento en la escuela funciona bajo una lógica del aprendizaje en tres etapas: la teoría, la explicación y la aplicación del concepto, dado que como lo menciona Katy es la estructura que se sigue en el desarrollo de las actividades que propone el programa Escuela Nueva, lo cual está en consonancia con lo que expresó la docente participante en el proyecto de aula. En la Figura 24 se visualiza la estructura metodológica de las guías de aprendizaje que se estipula en el programa Escuela Nueva, pues hace un llamado en cada una de sus fases, a propiciar entre los estudiantes la construcción del conocimiento a partir de una manera mecánica.
Por otra parte, la concepción de práctica social que sugieren Miguel y Miorim (2004) y el enfoque sociocultural propuesto por el MEN (2006), son reflexiones que invitan a los maestros a pensar en las matemáticas como un constructo social y humano. En efecto, el MEN (2006) sugiere:

[...] Una nueva visión de las matemáticas como actividad humana, resultado de la actividad de grupos culturales concretos (ubicados en una sociedad y en un periodo de
tiempo determinado) y, por tanto, como una disciplina en desarrollo, provisoria, contingente y en constante cambio (p.48).

La propuesta que hace el MEN al docente de matemáticas, es trabajar las prácticas de aula desde una mirada sociocultural teniendo en cuenta los saberes extraescolares en el aula, para que los estudiantes tomen conciencia de la existencia de problemas sociales y culturales en la clase de matemáticas. En efecto, admite que “el aprendizaje de las matemáticas no es una cuestión relacionada únicamente con aspectos cognitivos, sino que involucra factores de orden afectivo y social, vinculados con contextos de aprendizaje particulares” MEN (2006, p.47).

En este orden de ideas, el proyecto de aula implementado se convirtió en un aporte metodológico que permea no solo los saberes académicos, sino que integra el saber cultural de toda una comunidad, y por supuesto, una serie de condiciones afectivas que de una u otra manera favorecieron el desarrollo armonioso de la propuesta entre todos los participantes.

Por otra parte, Bishop (2000), establece que existen conocimientos y prácticas al interior de ciertas comunidades que no son reconocidas como matemáticas. Caso contrario ocurre entre los miembros de la comunidad de Mantagorda, puesto que las unidades de medidas utilizadas para cultivar arroz (cuarta, jeme, pie, espeque, lata, entre otras) son instrumentos no estandarizados que emplean de manera efectiva para realizar procesos de medición, las cuales son reconocidas y avaladas por todos los miembros de la comunidad, incluidos los estudiantes quienes demostraron gran dominio de estas en el campo. En la Figura 31 se puede ver la facilidad que genera a los estudiantes medir en situaciones del contexto extraescolar a través del uso de instrumentos de medida propios de la práctica sociocultural del cultivo de arroz.

15En este trabajo se acude al concepto de contexto propuesto por el MEN (1998) en los Lineamientos Curriculares de Matemáticas. El contexto tiene que ver con los ambientes que rodean al estudiante y que le dan sentido a las matemáticas que aprende. Variables como las condiciones sociales y culturales tanto locales como internacionales, el tipo de interacciones, los intereses que se generan, las creencias, así como las condiciones económicas del grupo social en el que se concreta el acto educativo, deben tenerse en cuenta en el diseño y ejecución de experiencias didácticas. Para aprovechar el contexto como un recurso en el proceso de enseñanza se hace necesaria la intervención continua del maestro para modificar y enriquecer ese contexto con la intención de que los estudiantes aprendan. Estas intervenciones generan preguntas y situaciones interesantes que por estar
Se observa como el conocimiento en esta práctica funciona bajo una lógica marcada por la experiencia vivida, el ensayo y error. A partir de este análisis, surgió entonces el cuestionamiento ¿cómo dialogan las unidades de medida propias con las que enseña la escuela?

La Figura 32 contiene ejemplos de actividades del programa Escuela Nueva para desarrollar los aprendizajes referidos a la medida en el grado tercero seguido de la apreciación de la docente Katy.

relacionadas con su entorno son relevantes para el estudiante y le dan sentido a las matemáticas. Así es como del contexto amplio se generan situaciones problemáticas (p.36).
Como se observa en la guía de la Figura 32, se propone el uso de la cinta métrica en una actividad lúdica, por lo tanto se indagó a la docente Luz sobre algunos aspectos:
Luz: ¿Y para qué utilizan la cinta métrica?
Katy: La cinta métrica la utilizamos en el aula de clases, ellos no manejan una cinta métrica como tal porque quizás los recursos en su casa, no tienen la capacidad de conseguirla. En la clase manejamos una que otra cinta métrica y trabajamos con ella en el momento que se están haciendo las actividades prácticas, medimos el salón, se hace mucho trabajo en equipo, trabajo en parejas, donde entre ellos miden el objeto que deseen, no solamente cosas grande si no cosas pequeñas también, para tener en cuenta los centímetros y todo eso.
Luz: ¿Y ellos reconocen las características de la cinta métrica, las unidades que tiene la cinta métrica?
Katy: Bueno, son cosas que digamos no las reconocen del todo, de una manera tan profunda porque igual es un pensamiento que muy poco se trabaja, básicamente se tiene un poco aislado. Nosotros los maestros de Escuela Nueva y, en muchas ocasiones, los maestros de escuela graduada simplemente nos enfatizamos como a trabajar en el pensamiento numérico, y el pensamiento métrico lo dejamos a un lado. Sin embargo, estamos tratando de trabajar en esta parte.
También, la cinta métrica, el metro como vemos que en muchas ocasiones no lo tienen físico, lo que hacemos es dibujarlo en cartulina, trabajar con las regletas, o sea con cualquier otro material del medio lo podemos construir.

Surge entonces una tensión generada por el sistema educativo y encaminada a la homogenización de las instituciones escolares, donde no se tiene en cuenta la diversidad social y cultural de los estudiantes. Al respecto, Bishop (1988) afirma que educar en el ámbito matemático implica ir más allá de contenidos, requiere afianzamiento de hábitos, costumbres y sobre todo necesita una conciencia en los valores que subyacen a las matemáticas y un reconocimiento de la complejidad de enseñar estos valores a los niños; he aquí el desafío que se presenta a los docentes, a las instituciones educativas y sistema educativo en general.

La enculturación matemática formal pretende iniciar a los niños en las simbolizaciones, conceptualizaciones y valores de la cultura, hecho que se asumió a lo largo de la intervención

16 Oliveras (1995), expresa que la enculturación matemática es una parte de la enculturación natural y es un proceso continuo desde el saber del grupo cultural del aprendiz hasta el saber normado o escolar. Dentro de los
pedagógica como un proceso de interacción social desarrollado dentro de un marco de conocimientos determinados, que implicó un proceso creativo en el cual interactuaron individuos que viven en una cultura con quienes nacieron en ella; lo cual a su vez, es propiciador de ideas, normas y valores que son similares de una generación a otra, aunque es inevitable que difieran en algún aspecto debido a la función recreadora de la nueva generación.

En este sentido Monteiro (2005) como se citó en Jaramillo (2011) expresa que cuando los saberes escolares desconocen o deslegitan otras formas de conocimientos y de saberes, se genera un modo de exclusión social, pues esto conduce a la deslegitimación de las prácticas sociales que dan sustento a dichos saberes. En consecuencia, esta tensión vivida en el escenario de la escuela Mantagorda, determinada básicamente por el conocimiento científico traducido en conocimiento académico, desestima el conocimiento sociocultural de los individuos que interactúan y dan sentido a las prácticas escolares y sociales.

Otra tensión existente estuvo enmarcada por la disociación de los aprendizajes relacionados con el uso de unidades de medida que se enseñan bajo la lógica de la escuela y aquellas empleadas en la práctica sociocultural del cultivo de arroz. Es necesario decir que el estudiante reconoce las que competen al entorno agrícola y su uso en la medición; pero no alcanza a darle significado en la escuela. Por ejemplo, en la escuela únicamente se utiliza el metro como unidad de medida, y en la práctica escolar todo objeto que miden, lo expresan en términos de metros o centímetros; conocimiento que es poco efectivo a la hora de expresar el resultado de una medida, desconociendo los atributos a medir, como se ilustra en la Figura 33.

prototipos o modelos de formación, generalmente asociados a los distintos paradigmas que hay sobre la enseñanza y el aprendizaje, propone un modelo de formación centrado en la investigación del propio proceso de enculturación en este trabajo de profundización apoyamos estos planteamientos, pues consideramos que el profesor debe tener habilidades para analizar los problemas del aula y darle soluciones abiertas y coherentes con la realidad temporal y del entorno.
Según Bishop (1988), al reconocer la naturaleza multicultural de las sociedades, se está tomando consciencia del fracaso escolar al cual se enfrentan muchos niños que provienen de comunidades étnicas minoritarias; el hecho de identificar tal conflicto cultural lleva a reexaminar y reevaluar el currículo en matemáticas, y en especial, sus didácticas.

4.2.2. Desafíos

De acuerdo con el autor, más que desarrollar las actividades que se proponen en el currículo de Escuela Nueva, el maestro en sus prácticas escolares deberá ocuparse de estudiar la aplicabilidad, la efectividad y la eficiencia de prácticas y procurar desarrollar conocimiento matemático generalizable a partir del conocimiento matemático local.

Para Moreira (1997), citado en Monteiro y Rodrigues (2011) el currículo se puede tomar como un elemento relevante, “utilizado por diferentes sociedades, para la conservación, la transformación y la renovación de conocimientos acumulados históricamente, así como para la socialización de niños, jóvenes y adultos a partir de valores tenidos como deseables” (p. 40). El autor propone una reorganización del currículo, con base en la promoción de un ambiente escolar...
favorable para la comprensión de la realidad existente, para el desarrollo de nuevas concepciones de conocimiento, y propicio para el diálogo entre las diferentes culturas no hegemónicas, permitiendo la formación de subjetividades multidimensionales.

En el siguiente episodio se presenta aparte de la entrevista que los niños hicieron al señor Wilfrido:

| Julián Camilo: ¿Cuál es el tiempo para sembrar arroz? |
| Wilfrido: Este es el tiempo desde abril y mayo por la lluvia, se deja pasar la primera lluvia. La tierra refresca y después de la segunda ya la tierra está lista. |

4.2.3. Aprendizajes

En este sentido, aspectos como los tiempos de cultivo y cosecha tienen sus implicaciones en una propuesta curricular enmarcada bajo una perspectiva sociocultural; por lo tanto, se propone para las prácticas escolares el abordaje desde la etnomatemática una organización curricular capaz de ofrecer espacios tanto para la representación y la formación de identidades y subjetividades mediante el diálogo y la confrontación, como para la reflexión sobre valores, creencias y saberes, permitiendo valorar y legitimar distintas producciones de saberes. Es necesario que la escuela se piense en función de los procesos que enmarcan la práctica sociocultural que se quiere vincular, desde parámetros distintos al disciplinar para que los saberes circulen entre las diversas actividades que las constituyen, y para que la escuela pase a ser un espacio en el que dichos saberes se problematice y articulen a partir de las conexiones que se van formando.

De este modo la alianza entre las prácticas socioculturales y el currículo amplía no solo el conocimiento en la práctica escolar sino también en aquellos que tienen el saber cultural; ejemplo de ello es el señor Wilfrido, quien expresó en la reunión realizada en la segunda visita in situ que “no creo que en la actividad de la siembra del arroz haya de las matemáticas de la escuela”. (Wilfrido, comunicación personal, 19 de julio de 2018). Hecho que revela el distanciamiento evidente entre escuela y entorno sociocultural, una brecha que está generando
frustración entre comunidades vulneradas por el irresoluto desconocimiento a los saberes ancestrales.

Por esta razón, marcó un paradigma de cambio en la institución abordada, el hecho de implementar una propuesta que tomará en consideración para sus prácticas educativas los saberes socioculturales de la comunidad; se buscó favorecer la construcción de aprendizajes vinculando las prácticas del contexto extra escolar a las prácticas inherentes a la escuela. Por lo tanto, uno de los desafíos en el campo de la etnomatemática va encaminado a transformar las concepciones que se tienen de las matemáticas a partir de las prácticas socioculturales, tal como sucedió con Wilfrido, quien modificó su sentir frente a este saber después de su participación en el proyecto de aula.

Por su parte, los estudiantes de grado tercero Julián Camilo, Aníbal y Deiner al igual que sus demás compañeros manifestaron desde el diálogo su aceptación al trabajo realizado desde las actividades propuestas en el proyecto de aula. Gracias a los aportes de sus tres compañeros los demás integrantes del grupo se acercaron al proceso de la práctica sociocultural del cultivo de arroz, reconociendo en ella elementos importantes para su aprendizaje, favorecidos desde el trabajo realizado. Estos se pueden ver en las diferentes respuestas de los estudiantes siguiente interrogante:

| Luz: ¿qué aprendiste con el desarrollo de este proyecto? |
| Julián Camilo: Aprendí que no solo se mide con el metro y la regla, si no también que uno puede medir con los pies, con la cuarta y todas esas también son unidades de medida. |
| Deiner: Hoy aprendí que todas las cosas no se pueden medir por ejemplo el amor, los sentimientos, lo que sí podemos medir es un cultivo por ejemplo de arroz, un hueco una persona. |
| Aníbal: Aprendí gracias a Don Wilfrido a sembrar arroz y a tener buena puntería, medir bien la distancia para hacer los huecos. |

De cada expresión de los estudiantes se puede identificar aprendizajes importantes dentro de la propuesta desarrollada, en el caso de Julián Camilo se observa un reconocimiento y cambio de concepción frente a que se puede medir con otros elementos en este caso las partes del cuerpo,
que desde la práctica sociocultural del cultivo de arroz se usan por encima de la cinta métrica, que junto con la regla son los instrumentos que más se usan al interior del aula de clases. De igual forma, en lo expresado por Deiner se puede evidenciar cómo desde la práctica se pueden identificar los diferentes atributos que pueden ser medidos o no de los objetos o acciones. Por último, Anibal deja entrever que por medio del proyecto de aula, que vinculó al señor Wilfrido aprendió aspectos relacionados con la medida dentro del proceso de la siembra de arroz.
5. CONCLUSIONES

El desarrollo de este proyecto de profundización permitió responder a la pregunta de profundización: ¿Cómo favorecer la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá sede Mantagorda? Al respecto, se puede afirmar que el constructo de saberes y procesos que se vivencian en esta experiencia sociocultural, trasciende de generación en generación, a través de una serie de significados y representaciones simbólicas que permean la construcción del conocimiento, mediado por la historia y el valor dado a la cultura.

En este sentido, asuntos como percibir, comparar y estimar son procesos naturales, entendidos y practicados por los miembros de la comunidad en sus interacciones cotidianas, procesos que se adquieren mediante el ensayo – error, la práctica y la observación. Así pues, facilitar estrategias que permitan la construcción de procesos de medición entre los estudiantes, requirió de un alto componente de sentido y conexión social, de tomar como referente los mismos miembros de la comunidad, y de conciliar en especial, la relación entre los saberes del aula que determina el MEN y los saberes culturales que son determina en la forma de relacionarse de los individuos. De esta manera, es posible observar cómo, en medio de la actividad de cultivar el arroz, los estudiante pueden realizar procesos de medición desde la siembra de este producto, al realizar los huecos donde se deposita la semilla y al calcular la distancia entre estos con el fin de que las plantas crezcan conservando una distancia prudente para efectos de obtener una cosecha apta para el consumo perciben, estiman y comparan.

De igual manera, se pudo dar cumplimiento al objetivo general, a través del cual se pretendió analizar la construcción de procesos de medición a partir de la práctica sociocultural del cultivo de arroz, por medio de un proyecto de aula en los estudiantes de tercer grado de la Institución Educativa Santiago de Urabá, sede Mantagorda. Uno de los factores que posibilitó llevar a cabo este propósito, fue la estructuración de categorías emergentes de análisis, que fueron: los Saberes y práctica de los procesos de medición en el cultivo de arroz, y las Relaciones entre la práctica escolar y la práctica sociocultural del cultivo de arroz.
Con respecto a la primera categoría de análisis, pudo observarse que el uso de los instrumentos no convencionales de creación propia (el espeque, la lata, la pita), las unidades de medidas antropométricas (el pie, el jeme y la cuarta), y las relaciones costo – beneficio que realizan en torno al cultivo del arroz, son mecanismos usados por la comunidad para sobrevivir y trascender. El arroz en esta comunidad tiene un valor de sobrevivencia, para lo cual, la unidad de medida “puño de arroz” representa ahorro y cooperación, es aquí donde la etnomatemática inherente a esta comunidad, hace que el dinero pierda valor comercial frente a la tranquilidad que produce la tenencia del arroz en casa; procesos a partir de los cuales se fortalece la cultura y la inmersión en esta práctica. El cultivo del arroz, en tanto práctica social, permite apreciar que existen otras unidades de medida distintas al metro, y que la escuela de forma consciente o inconsciente se aleja y desconoce el saber sociocultural que poseen los estudiantes y los miembros de la comunidad, deslegitimizando el conocimiento que se produce al interior de las comunidades.

En la categoría relaciones entre la práctica escolar y la práctica sociocultural del cultivo de arroz se evidenciaron las tensiones, desafíos y aprendizajes que se tejen en esta relación. Una de las tensiones es que la práctica de escolar, referida a la medida, en la sede de Mantagorda, se orienta desde los Lineamientos del Programa Escuela Nueva; a su vez, la docente sigue las instrucciones del programa en el orden curricular que los textos expresan, realizan actividades fuera del aula, pero estas salidas no implican el análisis y la construcción del conocimiento a partir de las diferentes prácticas socioculturales del entorno, el conocimiento se vivencia de forma limitada y gira en torno a la explicación, la teoría y la práctica o ejercitación. Esto genera que los estudiantes sientan que los aprendizajes que viven en su práctica sociocultural no están ligados a lo que viven en la escuela.

Otra tensión fuerte, se evidenció en la no conexión escolar permeado por los aprendizajes no alcanzados en la escuela; es frecuente que en la práctica escolar los estudiantes expresen el valor de una medida con unidades de longitud, porque en la escuela desarrollan las actividades referidas a la medición principalmente con el metro, hecho que se constató en el desarrollo del proyecto. Antes de iniciar este proyecto de profundización, poco o nada dialogaban las unidades de medidas no convencionales usadas en la práctica sociocultural del
La práctica del cultivo de arroz y las que se utilizan en la práctica escolar. En este sentido, vale la pena preguntarse, ¿acaso estos saberes que permean la siembra y cosecha del arroz son mecanismos inválidos para propiciar conocimiento al interior del aula de clase?

En esta categoría se plantea como desafío la reestructuración del currículo, a partir del cual se tomen en consideración otros procedimientos contextuales y prácticas sociales en el ámbito educativo que posibiliten a los miembros de la escuela romper con la visión universalista del saber, desestabilizando algunas de las relaciones de poder que organizan socialmente tanto saberes como prácticas, con el fin de posibilitar una dinámica de circularidad de saberes.

Esta perspectiva de trabajo en la escuela que involucra prácticas socioculturales del entorno implica aprender de los fenómenos asociados a estas prácticas, como la época de lluvia y el tiempo de duración de esta, para que estos elementos asociados a la práctica sociocultural puedan ser tenidos en cuenta al momento de planificar y ejecutar el diseño curricular, permitiendo el funcionamiento y desarrollo de los diferentes procesos asociados al ambiente extraescolar que pueden ser tenidos en cuenta en las escuelas.

Este trabajo ha sido de gran impacto y aprendizaje para la Institución Educativa Santiago de Urabá, puesto que el Directivo Docente solicitó que se replicara la propuesta mediante proyectos de aula en todas las sedes. De igual manera, la docente Katy reconoce que este trabajo le sirvió para desaprender aspectos referidos a la enseñanza de la medida en la escuela, afianzando saberes relacionados con el conocimiento didáctico del concepto de medición y, en especial, a valorar los aprendizajes que tienen los niños de su entorno y las actividades que realizan a diario.

Los estudiantes Deiner, Julián Camilo y Aníbal, expresan en sus aprendizajes el reconocimiento de los atributos medibles en los objetos, las unidades de medida propia como instrumentos con los cuales se pueden realizar procesos de medición como la estimación y la comparación, al igual que reconocen el saber cultural de la práctica sociocultural del cultivo de arroz como una posibilidad de ampliar los aprendizajes de la escuela.
Dentro de los aprendizajes se resalta el padre de familia participante del proyecto, el señor Wilfrido, reconoció el potencial matemático que hay en las labores que realiza a diario y cómo esta puede ser útil en la enseñanza de la escuela. De igual manera, acercarse al entorno educativo en un plano diferente, y en especial a los conceptos matemáticos, le permitió cambiar su percepción frente a esta área de saber específico.

Por su parte, los estudiantes reconocieron el saber matemático referido al uso de las unidades de medidas propias del entorno socio cultural, su utilidad entre los miembros de la comunidad y, en especial, su relevancia en el contexto de supervivencia; así mismo, identificaron sus falencias o ‘vacíos conceptuales’ frente a los procesos de medición, para lo cual aprovecha las entrevista con el señor Wilfrido con el fin de acceder a conocimientos que hasta el momento les eran ajenos. Permitir que los estudiantes vivenciaran el conocimiento desde otra arista, facilitó que comprendieran la importancia de las matemáticas y la necesidad de acceder a múltiples saberes, de una manera práctica y vivencial, tal fue el caso de procesos como la percepción, la estimación y la comparación. Finalmente, los estudiantes estuvieron en capacidad de reconocer qué podían medir con el flexómetro e instrumentos no convencionales.

Para finalizar, los tutores-investigadores consideran que este estudio los llevó a reflexionar sobre las prácticas escolares y la labor que desempeñan al interior del aula; razón por la cual se sienten motivados a liderar procesos de cambios curriculares en los cuales se propicien espacios para el estudio del entorno extraescolar al cual pertenecen los estudiantes, de tal manera que el aprovechamiento de los aprendizajes sea fortalecido a través de las prácticas socio culturales que emanan de las comunidades y que permean los procesos formativos de niños y jóvenes.
6. RECOMENDACIONES

- Es importante que para futuras apuestas por el trabajo desde la etnomátemática mediada por proyectos de aula se tenga presente en el caso de la práctica sociocultural del cultivo de arroz u otra práctica en particular los tiempos de sembrado y cosecha, pues de estos depende el progreso en el desarrollo de las actividades propuestas. En el caso del presente trabajo, los tiempos de la universidad y los de sembrado en la comunidad no favorecieron el desarrollo de todas las actividades propuestas, porque estas estaban sujetas al cultivo de arroz.

- Vincular el trabajo por proyectos de aula, favorece en gran medida y más en las comunidades rurales la participación de los padres de familia dentro del proceso de enseñanza y aprendizaje de sus hijos. Es importante que se puedan vincular más actores en los procesos que desde su saber cultural enriquezcan las prácticas escolares. Esta es una manera de reconocerlos y de motivarlos a no dejar de lado sus costumbres y creencias aprendidas en su comunidad.

- Identificar los aprendizajes en los que los estudiantes presentan dificultades, para a partir de ellos y desde los intereses de los estudiantes diseñar proyectos de aula que vinculen diferentes actores y promuevan la participación de la comunidad educativa en general.

- Revisar los planes de área de los establecimientos educativos a la luz del contexto sociocultural de cada comunidad, en tanto favorecen una participación activa de los individuos.

- Reconocer los saberes que permean la siembra y cosecha del arroz como mecanismos válidos para propiciar conocimiento al interior del aula de clase.
REFERENCIAS BIBLIOGRÁFICAS

Bishop, A. (2001). Lo que una perspectiva cultural nos cuenta sobre la historia de las matemáticas. UNO, 26(8), 61-72.

Segovia, I. y Castro, E. (2009). La estimación en el cálculo y en la medida: fundamentación curricular e investigaciones desarrolladas en el Departamento de Didáctica de la Matemática
de la Universidad de Granada. Electronic Journal of Research in Educational Psychology, (7)
Recuperado en http://www.redalyc.org/html/2931/293121936023/

ANEXOS

Anexo 1. Proyecto de Aula

1. CONTEXTUALIZACIÓN. Este proyecto se realizó en la vereda Mantagorda del Municipio de Turbo, compuesta por 45 familias cuya actividad económica es desarrollada en el agro, como el cultivo de arroz, yuca, maíz y de la ganadería. Los habitantes de este territorio, en su mayoría, son jornaleros es decir trabajan en haciendas y en las épocas de marzo alquilan terrenos para la siembra del arroz, este alquiler de las tierras lo retribuyen con puños de arroz de acuerdo a la cosecha que se recoja y a la cantidad de hectáreas utilizadas.

1.1 PROBLEMA. Chamorro (2000, 2003) afirma que los problemas de la medida en la escuela se sustituyen por problemas aritméticos, los procesos de medición por la aplicación de fórmulas y los ejercicios sobre conversiones son un simple ejercicio de numeración decimal. En el caso de las clases de matemáticas en la Escuela Rural Mantagorda, estas están alejadas de la matemática que se necesita en el contexto específicamente de las actividades relacionadas con la agricultura que practican los estudiantes y padres de familia del grado 3º; Por su parte, Arcavi, (2006), al referirse a las prácticas cotidianas de los estudiantes, describe que además de las prácticas matemáticas existentes y arraigadas en determinadas comunidades, las matemáticas cotidianas deberían incluir más de las vidas de los estudiantes.

Al revisar el plan de estudio y del área de matemáticas se observan los conocimientos básicos y aprendizajes estructurales para el grado tercero a luz de los referentes de calidad que propone el Ministerio de Educación Nacional (MEN, 2006), estos aprendizajes son siempre dejados para el último periodo académico, lo que impide que sean abordados en el aula de clase, generando la ausencia de estos en el proceso de enseñanza y aprendizaje de procesos de medición en el grado tercero. La concepción que tiene los estudiantes y maestros de la medición se limita a la longitud y sus unidades.
1.2 OBJETO DE CONOCIMIENTO. El objeto de conocimiento en este proyecto es los procesos de medida en la práctica sociocultural del cultivo de arroz en la vereda Mantagorda de la I. E. Santiago de Urabá.

2. OBJETIVO GENERAL DEL PROYECTO DE AULA. Reconocer los procesos de medición relativos a la longitud, masa y duración de eventos, presentes en las prácticas socioculturales del cultivo de arroz.

2.1 OBJETIVOS ESPECÍFICOS. * Comparar y explicar características que se pueden medir, en el proceso del cultivo de arroz, relativas a la longitud, la masa y la duración de los eventos. * Utilizar patrones, unidades e instrumentos convencionales y no convencionales en procesos de estimación, comparación y percepción de magnitudes como longitud, masa, y tiempo en situaciones relacionadas con el cultivo del arroz.

3. CONOCIMIENTOS

3.1. Procesos de medición. Dentro del proceso de construcción de las magnitudes, los procesos de medición entran a jugar un papel importante, pues el estudiante debe colocar en juego una serie de destrezas sensoriales y perceptivas con aspectos de geometría y aritmética, que le permitan apreciar la utilidad básica del sistema de medición. Estos procesos son la percepción, la conservación, la comparación, la estimación y la medición. Cada uno de ellos procede secuencialmente y se complementan a la vez y van desde la percepción a la comparación y después a la aplicación de un estándar de medida (Godino, Batanero y Roa, 2002).

La percepción: La medición empieza con la percepción de lo que debe ser medido, ya que esta permite abstraer las cualidades que son susceptibles de ser medidas. En la enseñanza de la medida se debe presentar a los niños diferentes estímulos, al igual que diferentes propiedades de los objetos para que los niños eventualmente los puedan medir.

La conservación: Se refiere a la capacidad que tienen algunas características de los cuerpos, de no cambiar o variar, aunque se les manipule y se produzcan cambios de situación en
los mismos. Hace referencia a la invariancia de ciertos aspectos cruciales de una situación. Se dice que una persona ha adquirido la capacidad de conservación sino se deja llevar por su percepción.

La comparación: La percepción es el comienzo de la medición, y la comparación sigue a la percepción. Habiendo percibido alguna propiedad de algún objeto, de un modo natural, se compara con otros objetos que tienen la misma propiedad. Este proceso conduce a la necesidad de un estándar que se puede aplicar sucesivamente, es decir la construcción de sistemas de referencia.

La estimación: “es el proceso de llegar a una medida sin la ayuda de instrumentos de medición, es un proceso mental, aunque frecuentemente hay aspectos visuales y manipulativos en él” (D. A. Grouws, citado en M.E.N 1998). La estimación en medida, para los mismos autores, está referida a los juicios que pueden establecer sobre el valor de una determinada cantidad o bien la valoración que puede hacerse sobre el resultado de una medida.

La medición: Las actividades de estimación de medias permiten centrar la atención de los alumnos en los atributos que se miden, el proceso de medición, el tamaño de las unidades y el valor de los referentes. De esta manera, la estimación de medidas contribuye al desarrollo del sentido espacial, así como conceptos y destrezas numéricas. Los estudiantes se darán cuenta que con frecuencia es suficiente con dar una estimación de una medida y que no es necesario usar instrumentos de medida en ciertas circunstancias.

3.2 Magnitud. El nombre de magnitud se atribuye a los atributos que varían de manera cuantitativa y continua como la longitud, el peso, la densidad, etc., o también de manera discreta como la cantidad de objetos en una colección.

3.3 Las unidades de medida. Son los tamaños de referencia que se han acordado para medir cada una de las distintas magnitudes físicas que necesitamos medir para estudiar, describir y comprender el mundo físico.
4. REFERENTES DE CALIDAD

Evidencias de aprendizaje

- Compara objetos según su longitud, área, capacidad, volumen, etc.
- Hace estimaciones de longitud, área, volumen, peso y tiempo según su necesidad en la situación.
- Hace estimaciones de volumen, área y longitud en presencia de los objetos y los instrumentos de medida y en ausencia de ellos.
- Empaca objetos en cajas y recipientes variados y calcula la cantidad que podría caber; para ello tiene en cuenta la forma y volumen de los objetos a empacar y la capacidad del recipiente en el que se empaca. MEN (2016, p.25)

5. METODOLOGÍA. Este proyecto de aula se desarrollará a través de diferentes actividades enmarcadas en algunas preguntas orientadoras relacionadas con el cultivo de arroz. Cada una de estas se compone de un objetivo específico, el tiempo estimado, los recursos y la descripción del trabajo bajo los momentos de inicio, desarrollo y cierre. Por último se presentan unas fichas para que los estudiantes desarrollen a lo largo de las diferentes actividades.
ACTIVIDAD INICIAL. RECONOCIENDO MI VEREDA

<table>
<thead>
<tr>
<th>PREGUNTA ORIENTADORA: ¿Cómo es el lugar donde vivo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJETIVO ESPECÍFICO: Identificar aspectos importantes dentro del contexto // de la vereda Mantagorda</td>
</tr>
<tr>
<td>TIEMPO ESTIMADO: 3 horas</td>
</tr>
<tr>
<td>RECURSOS: Cartulina, colbón, colores, imagen de la escuela, casas y cultivos de arroz.</td>
</tr>
<tr>
<td>LUGAR: Salón de clase</td>
</tr>
</tbody>
</table>

DESCRIPCIÓN DE LA ACTIVIDAD:

Inicio
- El maestro presenta a los estudiantes, en un pliego de cartulina, el croquis de la vereda, con la ubicación de la escuela y algunos puntos de referencia que faciliten su ubicación. Luego invita a los estudiantes para que de manera individual y utilizando las imágenes de las casas, las ubiquen donde consideren que quedaría su vivienda. Utilizando lápices de colores dibujen el camino que recorren de su casa a la escuela.

Desarrollo
- El docente coloca a disposición de los estudiantes imágenes de cultivos de arroz. Les pedirá a ellos que ubiquen las imágenes según consideren su lugar en el croquis de acuerdo a sus conocimientos. (Ver anexo. Actividad Inicial-1). Luego el docente motivará a los estudiantes para que respondan las siguientes preguntas:
 - ¿Cuántos cultivos de arroz hay de tu casa a la escuela?
 - ¿Qué conoces del cultivo de arroz?
✓ ¿Cuál es tu preparación con arroz favorita?

Cierre

- De acuerdo a las respuestas obtenidas anteriormente, el maestro hablará sobre algunas de las preparaciones con arroz colombianas como el arroz atollado, el arroz con pollo, el arroz con coco, y el arroz con leche. Esto con el propósito de motivar a los estudiantes para que conozcan más sobre el cultivo de arroz (Ver anexo. **Actividad Inicial-2**). Para registrar / los conocimientos previos de los niños se implementará la estrategia SQA (lo que sé, lo que quiero aprender y lo que aprendí) El último aspecto se irá fortaleciendo con el desarrollo de las diferentes actividades.

- Con los aportes de los estudiantes se completará el esquema en un pliego de cartulina, que mantendrá visible durante toda la implementación de la estrategia, para complementarlo con los aportes que surjan de los estudiantes, a medida que se van realizando las demás actividades.

<table>
<thead>
<tr>
<th>S</th>
<th>Q</th>
<th>A</th>
</tr>
</thead>
</table>

- Para terminar esta primera actividad, se compartirá con los niños un arroz con leche

NOTA: Para la actividad inicial se ambientará el salón con diferentes elementos que se relacionan con el proceso de cultivo de arroz.

ACTIVIDAD N°1

PREGUNTA ORIENTADORA: ¿Qué cambios se producen en todo el proceso del cultivo del arroz?

OBJETIVO ESPECÍFICO: Identificar las propiedades medibles en un objeto

TIEMPO ESTIMADO: 3 horas

RECURSOS: Cultivo de arroz, cuadernos, lápices, colores, cartón paja o cartulina, agricultor, tarjeta con roles.

DESCRIPCIÓN DE LA ACTIVIDAD:

Inicio

- Con la ayuda de un agricultor, se realizará la siembra de un puño de arroz correspondiente a la mano de un estudiante, el agricultor irá explicando el proceso a
medida que se vayan sembrando las semillas.

Desarrollo

- Invite a los estudiantes para que se organicen en grupo de 3 y que teniendo en cuenta las indicaciones y relatos del padre de familia realicen un esquema del proceso del cultivo de arroz, donde se puedan evidenciar las diferentes etapas que se realizan en esta labor: siembra, crecimiento, cosecha o recogida, secado y pilada. (Ver anexo. Actividad N° 1). Los estudiantes responderán, de forma oral, los siguientes interrogantes que hará el docente a manera de conversatorio.

 ✓ ¿Qué se puede medir en la etapa de la siembra? ¿Con qué lo podemos medir?
 ✓ ¿Qué se puede medir en la etapa del crecimiento? ¿Con qué lo podemos medir?
 ✓ ¿Qué se puede medir en la etapa de la cosecha o recogida? ¿Con qué lo podemos medir?
 ✓ ¿Qué se puede medir en la etapa de secado del arroz? ¿Con qué lo podemos medir?
 ✓ ¿Qué se puede medir en la etapa de pilar el arroz? ¿Con qué lo podemos medir?

Esto con el fin de ir introduciéndolos al concepto de magnitud

Cierre

- Cada estudiante socializará el dibujo y el docente por medio del diálogo facilitará el espacio para que respondan de manera verbal los siguientes interrogantes.

 ✓ ¿Qué cambios se producen en todo el proceso del cultivo del arroz?
 ✓ ¿Por qué la espiga en la plantación es verde y cuando está listo para pilar es café? ¿Qué pudo haber cambiado? ¿Cómo cambió la longitud? ¿Cómo cambió la masa?
 ✓ ¿Cómo cambió la temperatura?

- Al terminar, los estudiantes escribirán en sus cuadernos que aprendieron en esta actividad
ACTIVIDAD N°2 (Percepción y estimación)

PREGUNTA ORIENTADORA: ¿Qué propiedades se pueden medir en los objetos?

OBJETIVO ESPECÍFICO: Expresar de manera y cuantitativa la longitud y la masa de un objeto.

TIEMPO ESTIMADO: 3 horas

RECURSOS: Cuadernos, lápices, colores, cultivos de arroz, semillas de arroz, espigas de arroz, tarjetas con roles, cartulina, bolsas plásticas de color negro y colbón o silicona.

DESCRIPCIÓN DE LA ACTIVIDAD:

Con esta actividad se pretenden conocer las ideas intuitivas que los estudiantes tienen de medición, ayudarles a comprender que los atributos como la longitud y la masa están presentes en algunos objetos.

Inicio

- El docente pedirá a los estudiantes que, organizados en equipos de tres, elijan una tarjeta de las que están ubicadas en la mesa;
 - Relator: Socializa la actividad
 - Escritor: Toma apuntes de las respuestas
 - Relojero: Controla el Tiempo

Estimación con el objeto ausente:

- El docente mostrará a los estudiantes una bolsa de color negro que contiene una semilla y una espiga de arroz, y solicitará a cada grupo que en una hoja de papel respondan las siguientes preguntas:
 - ¿Cuánto mide una semilla de arroz?
 - ¿Cuánto mide una espiga de arroz?

Desarrollo

- El docente dará la instrucción a los estudiantes para que saquen la semilla y la espiga de la bolsa y expresen cuál es la medida de cada una. Luego el estudiante deberá utilizar la unidad de medida que considere necesaria para medir la semilla y la espiga (esta actividad le permitirá al docente conocer el procedimiento que utiliza el estudiante para estimar la longitud con un objeto ausente y presente)
Cierre
- En este momento se hará la conceptualización de lo que es una unidad de medida y se indagará en los estudiantes sobre qué unidades de medidas se utilizan para la siembra y cultivo del arroz.
✓ Tarea: Indagar en la casa que instrumentos de medidas son utilizados para medir longitudes en la siembra del arroz.

ACTIVIDAD N°3 (Comparación)

PREGUNTA ORIENTADORA: ¿Quién tiene mayor masa?

OBJETIVO ESPECÍFICO: Comparar, de manera cualitativa, la masa de un objeto.

TIEMPO ESTIMADO: 4 horas

RECURSOS: Cuadernos, lápices, colores, salida pedagógica a la parcela más cercana

DESCRIPCIÓN DE LA ACTIVIDAD
- Esta actividad se desarrollará a través de la visita pedagógica a una parcela que tenga puños de arroz almacenados o que esté en el proceso de siembra del arroz.

Inicio
- El docente socializará a los estudiantes el objetivo de la actividad, estableciendo acuerdos de buen comportamiento y auto cuidado durante el desarrollo de la misma. Luego se visitará la casa más cercana donde el estudiante encontrará 3 puños de arroz de distintos tamaños marcados con los números de 1 a 3 y responderá las siguientes preguntas
✓ ¿Cuál es el más liviano? ¿Por qué crees que más liviano? ¿Por qué crees que este es más pesado? ¿Cuánto crees que pesa cada uno? ¿Qué lo hace más pesado? ¿Qué lo hace menos pesado? Estas preguntas son direccionadas por el docente en forma de diálogo con los estudiantes

Desarrollo
- El maestro invita a los estudiantes que seleccionen un puño de arroz tomando como unidad de medida su mano derecha y comparen el resultado que obtuvo cada compañero, registrándolo los resultados en una hoja.
ACTIVIDAD N° 4 (Estimación y comparación) tiempo

PREGUNTA ORIENTADORA: ¿Cómo puedo medir la duración de un evento?

OBJETIVO ESPECÍFICO: Relacionar el cambio en las características físicas de los objetos con el cambio del tiempo.

TIEMPO ESTIMADO: 4 horas

RECURSOS: 2 pilones, puños de arroz, reloj, padres de familia.

Pilón: Es un mortero de madera que se utiliza para separar la cáscara del grano en una semilla de arroz.

Puño de arroz: unidad de medida correspondiente a puño de la mano de quien lo selecciona.

DESCRIPCIÓN DE LA ACTIVIDAD:

Inicio

- Se invitará a los estudiantes y padres de familia para que respondan la siguiente pregunta:
 ✓ ¿Cuánto tiempo toma pilar un puño de arroz? ¿Cómo se puede calcular?

- Luego la docente les dará la instrucción de organizarse, dos en grupo, y entregará a cada grupo una hoja de papel con una misión que para cumplir:
Misión:

Si este obsequio te quieres ganar, en menor tiempo un puño de arroz deberás pilar.

Desarrollo

- Cada grupo pilará un puño de arroz, un miembro del grupo registrará la hora de inicio y la hora de terminación de la actividad, luego se establecerán comparaciones entre el tiempo utilizado por cada grupo para desarrollar la misión. (Ver anexo. **Actividad N° 4-1**)
 ✓ Registra el tiempo que tardaste en realizar la misión
 ✓ ¿Cuánto tiempo tardó cada grupo en cumplir la misión?
 ✓ ¿Quién desarrolló la actividad en menos tiempo? ¿Por qué?
 ✓ ¿Quién desarrolló la actividad en mayor tiempo? ¿Por qué?
 ✓ ¿Cuál es la diferencia en tiempo entre un grupo y otro?

Cierre:

- Los estudiantes y padres de familia representarán el tiempo desde el sembrado hasta la recogida del arroz, resaltando los cambios que se producen en la semilla del arroz durante todo su proceso. (Ver anexo. **Actividad N° 4-2**)
 ✓ **Nota:** la docente aprovechará la presencia del padre de familia para invitarlo a narrar a los estudiantes el proceso del pilado en tiempos atrás, todo lo relacionado con el tiempo y sus implicaciones en el proceso del cultivo del arroz
ACTIVIDAD N°5.

PREGUNTA ORIENTADORA: ¿Cómo son las espigas de arroz?

OBJETIVO ESPECÍFICO: Identificar elementos en los cuales se evidencie la conservación de la longitud y la masa

TIEMPO ESTIMADO: 1 hora

RECURSOS: Espigas de arroz, copias, cinta adhesiva

LUGAR: Aula de clase

DESCRIPCIÓN DE LA ACTIVIDAD:

Inicio

- Para esta actividad se pedirá a los estudiantes que describan cómo es una espiga de arroz. Luego, se escriben en una hoja de papel bond las palabras clave de los comentarios sobre esta.

- Se pide a los estudiantes que dibujen una espiga de arroz. (Ver anexo. Actividad N° 5-1), terminado el dibujo se pasará a socializar algunos de los trabajos de los estudiantes y se compararán con las palabras clave que se escribieron inicialmente.

Desarrollo

- Los estudiantes, en grupos de trabajo, tendrán a su disposición varias espigas de arroz y, con las orientaciones del docente, realizarán algunas acciones que les permitirán establecer una equivalencia entre dos espigas, para luego transformar alguna de ellas y que el estudiante juzgue nuevamente la equivalencia dando sus razones. Para ello, los estudiantes tomarán una de las espigas y la pegarán en una hoja. (Ver anexo. Actividad N° 5-2)

- Luego, por parejas, identificarán entre las espigas que cada uno eligió, semejanzas y diferencias que se observen. Estas se escriben en la hoja de trabajo, para que luego se socialicen.

- A continuación, se preguntará a los estudiantes si hay dos espigas igual de largas. Si las hay, el grupo de estudiantes dirá el por qué de su respuesta. Si no hay grupos que tengan espigas igual de largas, se les pedirá a los estudiantes que seleccionen una espiga que sea igual de larga a alguna de la de sus compañeros (no se pueden usar instrumentos de medida convencionales) y la ubiquen de tal manera que se pueda observar dicha igualdad. Se espera que los estudiantes las ubiquen teniendo en cuenta
donde inicia y termina cada una.

- Cuando en los grupos de estudiantes tengan dos espigas que consideren iguales en su largo, se les pedirá que muevan una de ellas de manera horizontal con respecto a la otra; ya sea hacia la derecha o izquierda, así:

- Posteriormente, se les preguntará a los estudiantes ¿cuál creen que es más larga? ¿Por qué? Por último, se hará la siguiente pregunta: ¿qué cambia y qué se conserva al mover una de las espigas? La docente toma atención de las apreciaciones de los estudiantes.

Cierre
- Otra situación que planteará la docente es presentar dos espigas de diferente longitud, para presentarlas en el tablero de la siguiente manera:
ACTIVIDAD N° 5-3

- Se plantearán algunas preguntas, como:
 ✓ ¿Qué tienen en común las dos espigas?
 ✓ ¿Qué tienen de diferente las dos espigas?
 ✓ ¿Cómo puedo saber si las dos espigas son iguales o no en su longitud? ¿Por qué?
- Por último, se pregunta a los estudiantes ¿cuál de las dos espigas de arroz es más larga? y ¿por qué?
- Para valorar la actividad se preguntará a algunos estudiantes desde la estrategia SQA retomando la letra A (que aprendí):
 ✓ ¿Qué aprendieron a partir de la actividad realizada?
 ✓ ¿Qué no entendieron de la actividad realizada?

A cada grupo se le entrega una copia con la imagen de las espigas. (Ver anexo. **Actividad N° 5-3**)

ACTIVIDAD N° 6

OBJETIVO ESPECÍFICO: Identificar características medibles en objetos o elementos presentes dentro del proceso del cultivo del arroz, relativas a longitud, masa y duración de los eventos

PREGUNTA ORIENTADORA: ¿Qué diferencia hay entre el puño de arroz de don Luis y el de don Juan?

TIEMPO ESTIMADO: 1 hora

LUGAR: Salida pedagógica (visita a tres cultivadores de arroz)

DESCRIPCIÓN DE LA ACTIVIDAD:

Inicio

- Se presentará a los estudiantes el objetivo de la actividad y se darán las recomendaciones pertinentes para la salida pedagógica. Por grupos de estudiantes, se asignará un cultivador de arroz para que indaguen sobre este proceso. A continuación, se presentarán algunos posibles interrogantes para que los estudiantes respondan:
 ✓ ¿Cómo es el proceso del cultivo de arroz?
Las respuestas se consignarán en una ficha destinada. Posteriormente se socializarán y se establecerán similitudes entre las respuestas obtenidas.

Desarrollo

- En el salón de clase, el docente dispondrá en su escritorio un puño de arroz para que, a partir de la observación del mismo, los estudiantes participen de la actividad.

- El docente señalando el puño de arroz pregunta ¿recordamos lo que es esto? Se espera la respuesta de los estudiantes y luego se pregunta:

 ¿Qué es un puño de arroz? (De acuerdo a la entrevista realizada con los cultivadores)

- Después de recordar lo que es un puño de arroz los estudiantes se reúnen por grupos de trabajo y responden: (Ver anexo. Actividad N° 6)

 ✓ ¿Todos los puños de arroz son de igual tamaño? ¿Por qué?
 ✓ ¿Cuántas espigas de arroz crees que hay en un puño de arroz? ¿Cómo saberlo?
 ✓ ¿Cuántos granos de arroz habrá en una espiga de arroz? ¿Cómo calcularlos?

- Después de dar respuesta a las preguntas, se hará la socialización de las mismas.

Cierre

- Se espera para el cierre que los estudiantes reconozcan que hay situaciones en las que no se puede saber con certeza la cantidad exacta de algo, para nuestro caso de arroz, pero que gracias a la estimación podemos aproximarnos a esa cantidad.
Referencias

6. EVALUACIÓN. En la siguiente tabla se presentan algunas descripciones que permiten valorar los aprendizajes en el desarrollo de las actividades del proyecto de aula, y será la guía para la autoevaluación, heteroevaluación y coevaluación.
Evaluación.

<table>
<thead>
<tr>
<th>Evidencias de aprendizaje</th>
<th>si</th>
<th>no</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifica las propiedades medibles en un objeto.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expresa de manera cualitativa la longitud, masa y la temperatura de un objeto.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtiene la medida de longitud de un objeto presente y ausente, estableciendo relaciones entre los resultados obtenidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtiene la medida de longitud de un objeto presente y ausente estableciendo relaciones entre los resultados obtenidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compasa objetos según su longitud, masa y duración de un evento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hace estimaciones de longitud, masa y duración de un evento.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empaca objetos en cajas y recipientes variados y calcula la cantidad que podría caber.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valora la importancia de las mediciones y estimaciones en la vida diaria.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expresa los resultados numéricos de las mediciones manifestando las unidades de medida utilizadas.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXOS.
GUÍAS DEL ESTUDIANTE
Actividad Inicial

Preparaciones con arroz

Arroz Atollado

Arroz con pollo

Arroz con coco

Arroz con leche
Actividad N° 1

Proceso del cultivo de arroz

Dibuja cada uno de los momentos que se dan en el proceso del cultivo de arroz e identifica ¿qué se puede medir? Y ¿cómo lo puedo medir?

- **Siembra**
- **Crecimiento**
- **Cosecha (Recogida)**
- **Secado (Asoliado)**
- **Pilado**
Actividad N° 3

¿Quién tiene mayor masa?

1. Representa el puño de arroz seleccionado por cada compañero
2. Organízalos desde el más grande hasta el más pequeño

N° ______ N° ______ N° ______

1. ¿Cuál tiene mayor masa? ¿Por qué?
 __
 __
 __

2. ¿Cuál tiene menor masa? ¿Por qué?
 __
 __
 __
Actividad N° 4-1

¿Cómo puedo medir la duración de un evento?

NOMBRE DEL ESTUDIANTE: __

PADRES DE FAMILIA __

Completa los relojes dibujando las manecillas y determina el tiempo que tardaste en realizar la misión.

¿Cuánto tiempo tardó cada grupo en cumplir la misión? ____________________________

¿Quién desarrolló la actividad en menos tiempo? ¿Por qué? ____________________________

¿Quién desarrolló la actividad en mayor tiempo? ¿Por qué? ____________________________

¿Cuál es la diferencia en tiempo entre un grupo y otro? ____________________________

Tiempo empleado en la misión: ____________
Actividad N° 4-2

¿Cómo puedo medir la duración de un evento?

NOMBRE DEL ESTUDIANTE: _____________________________
PADRES DE FAMILIA ______________________________________

Representa los cambios que se producen en la semilla del arroz durante todo su proceso. Resaltando en el calendario el tiempo en que se produce cada cambio.
Actividad N° 5-1

Dibuja una espiga de arroz
Actividad Nº 5-2

Observando las espigas de arroz.

Selecciona una espiga de arroz y pégala en la hoja.

Anotaciones:

Actividad N° 5-3

Observa las siguientes espigas de arroz y responde.

- ¿Qué tienen en común las dos espigas?
- ¿Qué tienen de diferente las dos espigas?
- ¿Cómo puedo saber con seguridad si las dos espigas son iguales o no en su longitud?
- ¿Cuál de las dos espigas de arroz es más larga? y ¿por qué?
Actividad N° 6-1

Entrevista a un agricultor del sector.

- ¿Cómo es el proceso del cultivo de arroz?

- ¿Qué distancia hay entre un hueco y otro al sembrar el arroz? ¿se maneja siempre la misma distancia?

- ¿Qué instrumento utiliza para realizar los huecos al sembrar el arroz?

- ¿Cuántas semillas se depositan en cada hueco?

- ¿Cuánto arroz se utiliza para el sembrado?

- ¿Qué es un puño de arroz?

- ¿Cuál es el tiempo de cosecha del arroz?
Actividad N° 6-2

Conociendo un Puño de arroz.

- ¿Crees que los puños de arroz son de igual tamaño? Si___ No____ ¿Por qué?

- ¿Cuántas espigas de arroz crees que hay en un puño de arroz?

- ¿Cuántos granos de arroz habrán en una espiga de arroz?
Anexo 2. Autorización estudiantes

AUTORIZACIÓN DE ESTUDIANTES PARTICIPANTES EN EL PROYECTO

Vereda Montagorda 1 de Mayo de 2018

Cordial saludo apreciadas familias,

En las clases del área de Matemáticas los estudiantes participarán en diferentes actividades que se desarrollaran a través de un proyecto de Maestría en profundización de la Universidad de Antioquia, denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURALES DEL CULTIVO DE ARROZ. El objetivo de este proyecto es analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de medición en los estudiantes del grado 3º de la I.E. Santiago de Urabá.

Queremos de manera formal, solicitar la autorización para que el (la) estudiante [Nombre] del grado 3º forme parte de la investigación como participante, aclarando que su nombre será revelado en el informe final. Esta autorización se hace extensiva para recolectar algunos datos de su hijo(a) en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase, entre otras.

Agradecemos su atención y colaboración.

[Señalizaciones firmas]

Natalia Múnera Escobar
Asesora U de A

Scraya García
Asesora U de A

Danilo González Ruiz
Rector

Luz Obdulia Mosquera
Docente - Becario

Nelson Villacub G.
Medicarco Villacub
Docente - Becario

Feider López
Firma del padre de familia

Animal Peñino
Firma del estudiante
AUTORIZACIÓN DE ESTUDIANTES PARTICIPANTES EN EL PROYECTO

Vereda Mantagorda 01 Mayo 2018

Cordial saludo apreciadas familias,

En las clases del área de Matemáticas los estudiantes participarán en diferentes actividades que se desarrollarán a través de un proyecto de Maestría en profundización de la Universidad de Antioquia, denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURALES DEL CULTIVO DE ARROZ. El objetivo de este proyecto es analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de mediación en los estudiantes del grado 3° de la I.E. Santiago de Urabá.

Queremos de manera formal, solicitar la autorización para que el (la) estudiante José Morales del grado 3° forme parte de la investigación como participante, aclarando que su nombre será revelado en el informe final. Esta autorización se hace extensiva para recolectar algunos datos de su hijo(a) en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase, entre otras.

Agradecemos su atención y colaboración

Natalia Múnera Escobar
Asesora J de A

Daniele González Ruiz
Rector

Medardo Villacob G.
Medardo Villacob
Docente - Becario

Soraya García
Asesora U de A

Luz Obdúlia Mosquera
Docente - Becario

Delcy Delarosa
Firma del padre de familia

Firma de Jose Morales
Firma del estudiante
AUTORIZACIÓN DE ESTUDIANTES PARTICIPANTES EN EL PROYECTO

Vereda Mantagorda 4 de Mayo 2018

Cordial saludo apreciadas familias,

En las clases del área de Matemáticas los estudiantes participarán en diferentes actividades que se desarrollaran a través de un proyecto de Maestría en profundización de la Universidad de Antioquia, denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURALES DEL CULTIVO DE ARROZ. El objetivo de este proyecto es analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de medición en los estudiantes del grado 3° de la I.E. Santiago de Urabá.

Queremos de manera formal, solicitar la autorización para que el (la) estudiante JULIAN CAMILO SANCHEZ P. del grado 3° forme parte de la investigación como participante, aclarando que su nombre será revelado en el informe final. Esta autorización se hace extensiva para recolectar algunos datos de su hijo(a) en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase, entre otras.

Agradecemos su atención y colaboración

Natalia Múnera Escobar
Asesora U de A

Danilo González Ruiz
Rector

Medardo Villaclob
Docente - Becario

Soraya García
Asesora U de A

Luz Obtulía Mosquera
Docente - Becario

Firma del padre de familia

Firma del estudiante
Anexo 3. Autorización padre de familia.

AUTORIZACIÓN PARA PARTICIPANTES EN EL PROYECTO

Vereda, Mantagorda 1 de Mayo 2018

Yo ____________________________ identificado con número de documento de __, de la ciudad de ____________________________ y domicilio ____________________________, acepto participar en las diferentes actividades que se desarrollarán a través del proyecto de Maestría en profundización de la Universidad de Antioquia denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURAL DEL CULTIVO DE ARROZ, que tiene como objetivo analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de medición en los estudiantes del grado 3º de la I.E. Santiago de Urabá.

Igualmente, autorizo a los responsables del proyecto para que me vinculen en la investigación como participante activo y puedan tomar mis datos en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase y de campo, entre otras.

Natalia Múnera Escobar
Asesora U de A

Soraya García
Asesora U de A

Danilo González Ruiz
Rector

Luz Obdulia Mosquera
Docente – Becario

Medardo Villacob G.
Docente – Becario

Firma del participante
Anexo 4. Autorización docente

AUTORIZACIÓN PARA PARTICIPANTES EN EL PROYECTO

Vereda, Mantagorda 10 Mayo 2018

Yo, Kathy Hernandez, identificado con CC 1000356974 de Turbo, acepto particiar en las diferentes actividades que se desarrollarán a través del proyecto de Maestría en profundización de la Universidad de Antioquia denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURAL DEL CULTIVO DE ARROZ, que tiene como objetivo analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de medición en los estudiantes del grado 3° de la I.E. Santiago de Urabá.

Igualmente, autorizo a los responsables del proyecto para que me vinculen en la investigación como participante activo y puedan tomar mis datos en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase y de campo, entre otras.

Natalia Múnera Escobar
Asesora U de A

Danilo González Ruiz
Rector

Soraya García
Asesora U de A

Luz Obdeta Mosquera
Docente – Becario

Medardo Villacob G.
Docente - Becario

Firma del participante
Anexo 5. Autorización Directivo Docente

AUTORIZACIÓN DEL DIRECTIVO PARA EL DESARROLLO DEL PROYECTO EN LA INSTITUCIÓN EDUCATIVA SANTIAGO DE URABÁ SEDE MANTAGORDA

Yo, Danilo González Ruíz en mi calidad de Rector de la I.E Santiago de Urabá autorizó que: en las clases del área de Matemáticas los estudiantes participarán en diferentes actividades que se desarrollaran a través de un proyecto de Maestría en profundización de la Universidad de Antioquia, denominado: EL ESTUDIO DE LA MEDIDA EN LA PRÁCTICA SOCIOCULTURALES DEL CULTIVO DE ARROZ. El objetivo de este proyecto es analizar las características de las prácticas socioculturales del cultivo de arroz, que posibilitan la construcción de los procesos de medición en los estudiantes del grado 3° de la I.E. Santiago de Urabá – Sede Mantagorda.

De manera formal, autorizo para que los estudiantes del grado 3° forme parte de la investigación como participantes, aclarando sus padres autorizaron por escrito que sus nombres sean revelado en el informe final. Esta autorización se hace extensiva para recolectar algunos datos de su hijo(a) en forma de grabaciones, entrevistas, fotos, videos, guía de trabajo en clase, entre otras.

Agradecemos su atención y colaboración.

Dado en la Vereda Mantagorda a los 01 días del mes de Mayo del 2018

Firma rector: ___________________________
Nombre completo: Danilo González Ruíz